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Abstract
Inhibition is a key aspect of neural dynamics playing a fundamental role for the emergence of neural
rhythms and the implementation of various information coding strategies. Inhibitory populations are
present in several brain structures, and the comprehension of their dynamics is strategical for the
understanding of neural processing. In this paper, we clarify themechanisms underlying a general
phenomenon present in pulse-coupled heterogeneous inhibitory networks: inhibition can induce not
only suppression of neural activity, as expected, but can also promote neural re-activation. In
particular, for globally coupled systems, the number offiring neuronsmonotonically reduces upon
increasing the strength of inhibition (neuronal death). However, the randompruning of connections
is able to reverse the action of inhibition, i.e. in a random sparse network a sufficiently strong synaptic
strength can surprisingly promote, rather than depress, the activity of neurons (neuronal rebirth).
Thus, the number offiring neurons reaches aminimumvalue at some intermediate synaptic strength.
We show that thisminimum signals a transition from a regime dominated by neuronswith a higher
firing activity to a phasewhere all neurons are effectively sub-threshold and their irregularfiring is
driven by current fluctuations.We explain the origin of the transition by deriving ameanfield
formulation of the problem able to provide the fraction of active neurons as well as the first two
moments of theirfiring statistics. The introduction of a synaptic time scale does notmodify themain
aspects of the reported phenomenon.However, for sufficiently slow synapses the transition becomes
dramatic, and the systempasses from a perfectly regular evolution to irregular bursting dynamics. In
this latter regime themodel provides predictions consistent with experimental findings for a specific
class of neurons, namely themedium spiny neurons in the striatum.

1. Introduction

The presence of inhibition in excitable systems induces a rich dynamical repertoire, which is extremely relevant
for biological [13], physical [32], and chemical systems [84]. In particular, inhibitory coupling has been invoked
to explain cell navigation [87], morphogenesis in animal coat pattern formation [46], and the rhythmic activity
of central pattern generators inmany biological systems [27, 45]. In brain circuits, the role of inhibition is
fundamental to balancemassive recurrent excitation [73] in order to generate physiologically relevant cortical
rhythms [12, 72].

Inhibitory networks are important not only for the emergence of rhythms in the brain, but also for the
fundamental role they play in information encoding in the olfactory system [39] aswell as in controlling and
regulatingmotor and learning activity in the basal ganglia [5, 15, 47]. Furthermore, stimulus-dependent
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sequential activation of a group of neurons, reported for asymmetrically connected inhibitory cells [33, 52], has
been suggested as a possiblemechanism to explain sequentialmemory storage and feature binding [67].

These explain the long-term interest for numerical and theoretical investigations of the dynamics of
inhibitory networks. The study of globally coupled homogeneous systems have already revealed interesting
dynamical features, ranging from full synchronization to clustering appearance [23, 83, 85], and from the
emergence of splay states [90] to oscillator death [6]. The introduction of disorder, e.g. randomdilution, noise,
or other forms of heterogeneity in these systems leads tomore complex dynamics, ranging from fast global
oscillations [9] in neural networks and self-sustained activity in excitable systems [37], to irregular dynamics
[3, 29–31, 42, 49, 56, 82, 90]. In particular, inhibitory spiking networks, due to stable chaos [63], can display
extremely long erratic transients even in linearly stable regimes [3, 29, 30, 42, 49, 82, 89, 90].

One of themost studied inhibitory neural populations is represented bymedium spiny neurons (MSNs) in
the striatum (which is themain input structure of the basal ganglia) [36, 57]. In a series of papers, Ponzi and
Wickens have shown that themain features ofMSNdynamics can be reproduced by considering a randomly
connected inhibitory network of conductance based neurons subject to external stochastic excitatory inputs
[64–66]. Our study has beenmotivated by an interesting phenomenon reported for thismodel in [66]: namely,
upon increasing the synaptic strength the systempasses from a regularlyfiring regime, characterized by a large
part of quiescent neurons, to a biologically relevant regimewhere almost all cells exhibit a bursting activity,
characterized by an alternation of periods of silence and of highfiring. The same phenomenology has been
recently reproduced by employing amuch simpler neuralmodel [1], thus suggesting that this behavior is not
related to the specificmodel employed, but is indeed a quite general property of inhibitory networks. However,
the origin of the phenomenon and theminimal ingredients required to observe the emergence of this effect
remain unclear.

In order to exemplify the problem addressed in this paper, we report infigure 1 the fraction of active neurons
nA (i.e. the ones emitting at least one spike during the simulation time) as a function of the strength of the
synaptic inhibition g in an heterogeneous network. For a fully coupled network, nA has amonotonic decrease
with g (figure 1(a)), while for a random sparse network, nA has a non-monotonic behavior, displaying a
minimumat an intermediate strength gm (figure 1(b)). In fully coupled networks the effect of inhibition is
simply to reduce the number of active neurons (neuronal death). However, quite counter-intuitively, in the
presence of dilution by increasing the synaptic strength the previously silenced neurons can return tofiring
(neuronal rebirth). Our aim is to clarify the physicalmechanisms underlying neuronal death and rebirth, which
are at the origin of the behavior reported in [1, 66].

In particular, we consider a deterministic network of purely inhibitory pulse-coupled Leaky Integrate-and-
Fire (LIF)neuronswith an heterogeneous distribution of excitatoryDC currents, accounting for the different
level of excitability of the neurons. The evolution of thismodel is studied for fully coupled and for random sparse
topology, as well as for synapses with different time courses. For the fully coupled case, it is possible to derive,
within a self-consistentmeanfield approach, the analytic expressions for the fraction of active neurons and for
the average firing frequency n̄ as a function of coupling strength g. In this case, themonotonic decrease of nA

Figure 1. Fraction of active neurons nA as a function of the inhibitory synaptic strength g for (a) a globally coupled system,where
= -K N 1, and (b) a randomly connected (sparse)networkwithK=20. In (a),the asymptotic value nA calculated after a time
= ´t 1 10S

6 is reported. Conversely in (b), nA is reported at successive times: namely, tS= 985 (red squares), = ´t 1.1 10S
4 (brown

stars), = ´t 5 10S
5 (blue diamonds), and = ´t 1 10S

6 (green triangles). An estimation of the times needed to reach nA= 1 can be
obtained by employing equation (13); these values range from = ´t 5 10s

9 for g= 0.1, to ´5 105 for g=50. Insets in (b) depict the
probability distributions n( )P of the single neuron firing rate ν for the sparse network for a given g at two different times: tS= 985 (red
filled histograms) and = ´t 1 10S

6 (thick empty green histograms). The histograms are calculated by considering only active
neurons. The reported data refer to instantaneous synapses, to a system sizeN=400, and to an uniformdistribution P(I)with

=[ ] [ ]l l, 1.0, 1.51 2 and q = 1. The values reported in (a) and (b) have been averaged over 10 random realizations of the network.
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with g can be interpreted as aWinner Takes All (WTA)mechanism [16, 21, 88], where only themost excitable
neurons survive the inhibition increase. For random sparse networks, neuronal rebirth can be interpreted as a
re-activation process induced by erraticfluctuations in synaptic currents.Within this framework it is possible to
semi-analytically obtain, for instantaneous synapses, a closed set of equations for nA aswell as for the average
firing rate and coefficient of variation as a function of the coupling strength. In particular, the firing statistics of
the network can be obtained via ameanfield approach by extending the formulation derived in [70] to account
for synaptic shot noise with constant amplitude. The introduction of afinite synaptic time scale does notmodify
the overall scenario provided that this is shorter than themembrane time constant. As soon as the synaptic
dynamics become slower, the phenomenology of the transition ismodified. At <g gm we have a frozen phase
where nA does not evolve in time on the explored time scales, since the current fluctuations are negligible. Above
gmwehave a bursting regime, which can be related to the emergence of correlated fluctuations induced by slow
synaptic times, as discussed in the framework of the adiabatic approach in [50, 51].

The remainder of this paper is organized as follows: In section 2we present themodels that will be
considered in the paper aswell as themethods adopted to characterize their dynamics. In section 3we consider
the globally coupled networkwherewe provide analytic self-consistent expressions accounting for the fraction
of active neurons and the average firing rate. Section 4 is devoted to the study of sparsely connected networks
with instantaneous synapses, and to the derivation of the set of semi-analytic self-consistent equations providing
nA, the average firing rate, and the coefficient of variation. In section 5we discuss the effect of synaptic filtering
with a particular attention on slow synapses. Finally in section 6, we briefly discuss the obtained results with a
focus on the biological relevance of ourmodel.

2.Model andmethods

Weexamine the dynamical properties of a heterogeneous inhibitory sparse networkmade ofN LIF neurons. The
time evolution of themembrane potential vi of the i-th neuron is ruled by the followingfirst-order ordinary
differential equation:

= - -˙ ( ) ( ) ( ) ( )v t I v t gE t , 1i i i i

where >g 0 is the inhibitory synaptic strength, Ii is the neuronal excitability of the i-th neuron encompassing
both intrinsic neuronal properties and the excitatory stimuli originating fromareas outside the considered
neural circuit, andEi(t) represents the synaptic current due to the recurrent interactions within the considered
network. Themembrane potential vi of neuron i evolves accordingly to equation (1) until it overcomes a
constant threshold q = 1, which leads to the emission of a spike (action potential) transmitted to all connected
post-synaptic neuronswhile vi is reset to its resting value vr= 0. Themodel in (1) is expressed in adimensional
units, this amounts to assume amembrane time constant t = 1m ; for the conversion to dimensional variables
see appendix A. The heterogeneity is introduced in themodel by assigning to each neuron a different value of
excitability Ii drawn from aflat distribution P(I), whose support is Î [ ]I l l,1 2 with  ql1 ; therefore, all neurons
are supra-threshold.

The synaptic current Ei(t) is given by the linear superposition of all the inhibitory post-synaptic potentials
(IPSPs) h ( )t emitted at previous times <t tn

j by the pre-synaptic neurons connected to neuron i, namely

å å h= -
¹ <

( ) ( ) ( )
∣

E t
K

C t t
1

, 2i
j i

ij
n t t

n
j

n

whereK is the number of pre-synaptic neurons.Cij represents the elements of theN×N connectivitymatrix
associatedwith an undirected randomnetwork, whose entries are 1 if there is a synaptic connection fromneuron
j to neuron i, and 0 otherwise. For the sparse network, we randomly select thematrix entries; however, to reduce
the sources of variability in the network, we assume that the number of pre-synaptic neurons isfixed, namely
å =¹ C K Nj i ij for each neuron i, where autaptic connections are not allowed.We have verified that the
results do not change if we randomly choose the links accordingly to an Erdös–Renyi distributionwith a
probabilityK/N. For a fully coupled networkwe have = -K N 1.

The shape of the IPSP characterizes the type offiltering performed by the synapses on the received action
potentials.We have considered two kinds of synapses: instantaneous ones, where h d=( ) ( )t t , and synapses
where the PSP is anα-pulse, namely

h a= a-( ) ( ) ( )t H t te , 3t2

withH denoting theHeaviside step function. In this latter case the rise and decay time of the pulse are the same,
namely t a=a 1 , and therefore the pulse duration tP can be assumed to be twice the characteristic time ta.
Model equations (1) and (2) are integrated exactly in terms of the associated event drivenmaps for different
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synaptic filtering, which correspond to Poincarémaps performed at the firing times (for details see
appendix A) [53, 91].

For instantaneous synapses, we have usually considered system sizesN=400 andN= 1400, and in the
sparse case in-degrees  K20 80 and  K20 600, respectively, with integration times up to
= ´t 1 10S

6. For synapseswith afinite decay timewe have limited the analysis toN=400 andK=20, and to
maximal integration times = ´t 1 10S

5. Finite size dependencies onN are negligible with these parameter
choices, as we have verified.

In order to characterize the network dynamics, wemeasure the fraction of active neurons ( )n tA S at time tS,
i.e. the fraction of neurons emitting at least one spike in the time interval [ ]t0, S . Therefore a neuronwill be
considered silent if it has a frequency smaller than t1 S, andwith our choices of = -t 10 10S

5 6, this
corresponds to neuronswith frequencies smaller than -- -10 103 4 Hzby assuming amembrane time constant
t = 10m ms as time scale. Estimation of the number of active neurons always begins after a sufficiently long
transient time has been discarded, usually corresponding to the time needed to deliver 106 spikes in the network.

Furthermore, for each neuronwe estimate the time averaged inter-spike interval (ISI)TISI, the associated
firing frequency n = T1 ISI, as well as the coefficient of variationCV, which is the ratio of the standard deviation
of the ISI distribution divided byTISI. For a regular spike trainCV=0, and for a Poissonian distributed one
CV= 1, while >CV 1 is an indication of bursting activity. The indicators reported in the following to
characterize network activity are ensemble averages over all active neurons, whichwe denote as ā for a generic
observable a.

To analyze the linear stability of the dynamical evolutionwemeasure themaximal Lyapunov exponentλ,
which is positive for chaotic evolution, and negative (zero) for stable (marginally stable) dynamics[4]. In
particular, by following [2, 55],λ is estimated by linearizing the corresponding event drivenmap.

3. Fully coupled networks:WTA

In the fully coupled case we observe that the fraction of active neurons nA saturates, after a short transient, to a
value that remains constant in time. In this case, it is possible to derive a self-consistentmeanfield approach to
obtain analytic expressions for the fraction of active neurons nA and for the average firing frequency n̄ of
neurons in the network. In a fully coupled network each neuron receives the spikes emitted by the other

= -K N 1neurons; therefore, each neuron is essentially subject to the same effective input> μ, apart from the
finite size corrections( )N1 .

The effective input current, for a neuronwith an excitability I, is given by

m n= - ¯ ( )I g n , 4A

where -( )n N 1A is the number of active pre-synaptic neurons assumed tofirewith the same average
frequency n̄ .

In amean field approach, each neuron can be seen as isolated from the network and driven by the effective
input currentμ. Taking into account the distribution of excitabilities P(I), one obtains the following self-
consistent expression for the average firing frequency:

òn
n
n q

=
- -
- -

-⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥¯ ( ) ¯

¯
( )

{ }n
I P I

I g n v

I g n

1
d ln , 5

IA

A r

A

1

A

where the integral is restricted only to active neurons, i.e. to Î { }I IA values for which the logarithm is defined,
while ò= ( )

{ }
n I P Id

IA
A

is the fraction of active neurons. In (5)wehave used the fact that for an isolated LIF

neuronwith constant excitabilityC, the ISI is simply given by q= - -[( ) ( )]T C v ClnISI r [11].
An implicit expression for nA can be obtained by estimating the neurons with effective input m q> ; in

particular, the fraction of silent neurons is given by

*

ò- = ( ) ( )n I P I1 d , 6
l

l

A
1

where l1 is the lower limit of the support of the distribution, while * n q= +¯l g nA . By solving self-consistently
equations (5) and (6), one can obtain the analytic expression for nA and n̄ for any distribution P(I).

In particular, for excitabilities distributed uniformly in the interval [ ]l l,1 2 , the expression for the average
frequency equation (5) becomes

òn
n
n q

=
-

- -
- -

-⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥¯

( )
¯
¯

( )
{ }n l l

I
I g n v

I g n

1
d ln , 7

IA 2 1

A r

A

1

A
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while the fraction of active neurons is given by the following expression

q
n

=
-

- + ¯
( )n

l

l l g
8A

2

2 1

with the constraint that nA cannot be larger than one.
The analytic results for these quantities compare quite well with the numericalfindings estimated for

different distribution intervals [ ]l l,1 2 , coupling strengths, and system sizes, as shown infigure 2. For definitively
large coupling g>10, some discrepancies between themeanfield estimations and the simulation results are
observable (see figure 2(b)). These differences are probably due to the discreteness of the pulses, which cannot be
neglected for very large synaptic strengths.

As a general featurewe observe that nA is steadily decreasingwith g, thus indicating that a group of neurons
with higher effective inputs (winners) silence the other neurons (losers) and that the number of winners
eventually vanishes for sufficiently large coupling in the limit of large system sizes. Furthermore, the average
excitability of active neurons (thewinners) ĪA increases with g, as shown in the inset offigure 2(a), thus revealing
that only neuronswith higher excitabilities survive the silencing action exerted by the other neurons. At the same
time, as an effect of the growing inhibition, the average firing rate of thewinners dramatically slows down.
Therefore, despite the increase of ĪA, the average effective input m̄ indeed decreases for increasing inhibition.
This represents a clear example of theWTAmechanismobtained via (lateral) inhibition, which has been shown
to have biological relevance for neural systems [20, 60, 88].

It is important to understandwhat is theminimal coupling value gc for which thefiring neurons start to die.
In order to estimate gc it is sufficient to set nA= 1 in equations (7) and (8). In particular, one gets

q n= -( ) ¯ ( )g l , 9c 1

Figure 2.Globally coupled systems. (a) Fraction of active neurons nA and (b) average network frequency n̄ as a function of the synaptic
strength g for uniformdistributions P(I)with different supports. Inset: average neuronal excitability of the active neurons ĪA versus g.
Empty (filled) symbols refer to numerical simulationwithN=400 (N = 1400), and dashed lines refer to the corresponding analytic
solution. Symbols and lines correspond frombottom to top to =[ ] [ ]l l, 1.0, 1.51 2 (black), =[ ] [ ]l l, 1.0, 1.81 2 (red), and

=[ ] [ ]l l, 1.2, 2.01 2 (blue). The data have been averaged over a time interval = ´t 1 10S
6 after discarding a transient of 106 spikes.
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and thus, for q=l1 even an infinitesimally small coupling is in principle sufficient to silence some neurons.
Furthermore, from figure 3(a) it is evident that whenever the excitabilities become homogeneous, i.e. for l l1 2,
the critical synaptic coupling gc diverges toward infinity. Thus, heterogeneity in the excitability distribution is a
necessary condition in order to observe a gradual neuronal death, as shown infigure 2(a).

This is in agreement with the results reported in [7], where homogeneous fully coupled networks of
inhibitory LIF neurons have been examined. In particular, forfinite systems and slow synapses, the authors in [7]
revealed the existence of a sub-critical Hopf bifurcation froma fully synchronized state to a regime characterized
by oscillator death occurring at some critical gc. However, in the thermodynamic limit  ¥gc for fast as well as
slow synapses, which is in agreement with ourmeanfield result for instantaneous synapses.

We also proceed to investigate the isolines corresponding to the same critical gc in the ( )l l,1 2 -plane, and the
results are reported infigure 3(b) for three selected values of gc. It is evident that the l1 and l2-values associated
with the isolines display a direct proportionality among them.However, despite lying on the same gc-isoline,
different parameter values induce a completely different behavior of nA as a function of the synaptic strength, as
shown in the inset offigure 3(b).

Direct simulationsof thenetwork atfinite sizes, namely forN=400 andN=1400, show that sufficiently large
couplingneuronswith similar excitabilities tend to formclusters, similarly towhatwas reported in [42], butwith a
delayedpulse transmission.However, in contrast to [42], the overallmacroscopic dynamics is asynchronous, andno
collective oscillations canbedetected for thewhole rangeof considered synaptic strengths.

4. Sparse networks: neuronal rebirth

In this sectionwewill consider a networkwith sparse connectivity, namely each neuron is supra-threshold and it
receives instantaneous IPSPs from K N randomly chosen neurons in the network. Due to the sparseness, the

Figure 3.Globally coupled systems. (a)Critical value gc as a function of the lower value of the excitability l1 for several choices of the
upper limit l2. (b) Isolines corresponding to constant values of gc in the ( )l l,1 2 -plane: namely, gc= 0.5 (black solid line), gc= 1.0 (red
dashed line), and gc= 2.0 (blue dotted line). Inset: Dependence of nA on g for three couples of values ( )l l,1 2 chosen along each of the
isolines reported in themain figure.
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input spike trains can be considered as uncorrelated, and at afirst approximation it can be assumed that each
spike train is Poissonianwith a frequency n̄ corresponding to the average firing rate of the neurons in the
network [8, 9]. Usually, themean activity of a LIF neural network is estimated in the context of the diffusion
approximation [69, 80]. This approximation is validwhenever the arrival frequency of the IPSPs is highwith
respect to thefiring emission, while the amplitude of each IPSPs (namely, =G g K ) is small with respect to the
firing threshold θ. This latter hypothesis in our case is not valid for sufficiently large (small) synaptic strength g
(in-degreeK ), as can be appreciated by the comparison shown infigure 13 in appendix B. Therefore, the
synaptic inputs should be treated as shot noise. In particular, here we apply an extended version of the analytic
approach derived by Richardson and Swabrick in [70] to estimate the average firing rate and the average
coefficient of variation for LIF neurons with instantaneous synapses subject to inhibitory shot noise of constant
amplitude (formore details see appendices B andC).

Contrasting with the fully coupled case, the fraction of active neurons nA does not saturate to a constant
value for sufficiently short times. Instead, nA increases in time due to the rebirth of losers previously silenced by
thefiring activity of winners, as shown infigure 1(b). This effect is clearly illustrated by considering the
probability distributions n( )P of thefiring rates of the neurons at successive integration times tS. These are
reported in the insets offigure 1(b) for two coupling strengths and two times: namely, tS= 985 (red lines) and
= ´t 1 10S

6 (green lines). From these data is evident that the fraction of neuronswith lowfiring rate (the losers)
increases with time, while the fraction of highfiring neurons remains almost unchanged.Moreover, the
variation of nA slows down for increasing tS, and nA approaches some apparently asymptotic profile for
sufficiently long integration times. Furthermore, nA has a non-monotonic behavior with g, which is opposite to
the fully coupled case. In particular, nA reveals aminimum nAm

at some intermediate synaptic strength gm
followed by an increase toward nA= 1 at large g. Aswe have verified, as long as < K N1 ,finite size effects are
negligible and the actual value of nA depends only on the in-degreeK and the considered simulation time tS. In
the followingwewill try to explain the origin of such a behavior.

Despite themodel being fully deterministic, due to the random connectivity the rebirth of silent neurons can
be interpreted in the framework of activation processes induced by random fluctuations. In particular, we can
assume that each neuron in the networkwill receive n KA independent Poissonian trains of inhibitory kicks of
constant amplitudeG characterized by an average frequency n̄ ; thus, each synaptic input can be regarded as a
single Poissonian trainwith total frequency n= ¯R n KA . Therefore, each neuron, characterized by its own
excitability I, will be subject to an average effective input m ( )I (as reported in equation (4)) plusfluctuations in
the synaptic current of intensity

s
n

= ¯ ( )g
n

K
. 10A

Indeed, we have verified that (10) gives a quantitatively correct estimation of the synaptic currentfluctuations
over thewhole range of synaptic coupling considered (as shown infigure 4). A closer analysis of the probability
distributionsP(IAT) of the inter-arrival times (IATs) reveals that these are essentially exponentially distributed,
as expected for Poissonian processes, with a decay rate given byR, as evident fromfigure 5 for two different
synaptic strengths.However, all these indications are not sufficient to guarantee that the IAT statistics are indeed
Poissonian. In particular, as pointed out in [40], a superposition of uncorrelated spike trains generated by the
same non-Poissonian renewal process can result in a peculiar non-renewal process characterized by
exponentially distributed and uncorrelated IATswith a non-flat power spectrum. In our case we have indeed
verified that for small coupling the power spectrum associatedwith the IATs deviates from the flat one at low
frequencies, which is similar to the results reported in [40]; meanwhile, at large g the spectrum recovers a
Poissonian shape. Therefore the hypothesis that the neuronal input is Poissonian in our case should be
considered only as afirst-order approximation, in particular for small synaptic couplings.

For instantaneous IPSP, the current fluctuations are due to stable chaos [63] since themaximal Lyapunov
exponent is negative for thewhole range of coupling, as we have verified. Therefore, as reported bymany
authors, erraticfluctuations in inhibitory neural networks with instantaneous synapses are due tofinite
amplitude instabilities, while at the infinitesimal level the system is stable [3, 29, 30, 42, 49, 82, 90].

In this circumstance, the silent neurons stay in a quiescent state corresponding to theminimumof the
effective potential  m= -( )v v v22 , and in order tofire they should overcome a barrier  q mD = -( ) 22 .
The average time tA required to overcome such a barrier can be estimated accordingly to theKramers’ theory for
activation processes [25, 80], namely

t
q m

s
-

⎛
⎝⎜

⎞
⎠⎟

( ( )) ( )t
I

exp , 11A 0

2

2

where t0 is an effective time scale taking in account the intrinsic non-stationarity of the process, i.e. the fact that
the number of active neurons increases during the time evolution.
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It is important to stress that the expression (11)will remain valid also in the limit of large synaptic couplings,
not only because of s2, but also because the barrier height will increase with g. Furthermore, both these
quantities grow quadratically with g at sufficiently large synaptic strength, as it can be inferred from equations (4)
and (10).

It is reasonable to assume that at a given time tS all neuronswith <t tA S will have fired at least once, and that
themore excitable willfirefirst. Therefore, by assuming that the fraction of active neurons at time tS is ( )n tA S , the
last neuron that hasfired should be characterized by the following excitability:

= - -ˆ ( )( ) ( )I l n t l l . 122 A S 2 1

Here, excitabilities I are uniformly distributed in the interval [ ]l l,1 2 . In order to obtain an explicit expression for
the fraction of active neurons at time tS, one should solve the equation (11) for the neuronwith excitability Î by
setting tS= tA, thus obtaining the following solution

f bg f fbg
g=

- + -
<

⎧
⎨⎪
⎩⎪

( ) ( )n t n
2 4

2
if 1

1 otherwise

13A S

2

2 A

Figure 4.Effective average input of active neurons m̄A (black circles) and average fluctuations of the synaptic currents s̄ (red squares)
as a function of the inhibitory coupling g. The threshold potential q = 1 ismarked by the (blue) horizontal dotted line and gmby the
(green) vertical dash-dotted line. The dashed black (red) line refers to the theoretical estimation for mA (σ) reported in equation (4)
(equation (10)) and averaged only over the active neurons. The data refer toN=1400,K=140, =[ ] [ ]l l, 1.0, 1.51 2 , and to a
simulation time = ´t 1 10S

6.

Figure 5.Probability distributions of IATs for a generic neuron in the network for (a) g= 1.3 and (b) g=10. In both panels, the red
continuous line indicates the exponential distribution corresponding to a purely Poissonian process with an arrival rate given by

n= ¯R n KA , and the dashed blue vertical lines refer to the average IAT for the Poissonian distribution, namely R1 . The distributions
have been evaluated for the arrival of ´5 105 IPSPs. Other parameters used for the simulation are as infigure 1(b).
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where

g n f n t b q= - + = = -( ) ¯ ¯ ( )l l g
g

K
t lln .2 1

2

S 0 2

Equation (13) gives the dependence of nA on the coupling strength g for a fixed integration time tS and time
scale t0 whenever we can provide the value of the average frequency n̄ . A quick inspection of equations (11) and
(13) shows that, setting nA= 1, we obtain two solutions for the critical couplings gc1 (gc2) below (above) that all
neuronswillfire at least once in the considered time interval. The solutions are reported infigure 6. In particular,
we observe that whenever ql1 the critical coupling gc1 will vanish, which is analogous to the fully coupled
situation. These results clearly indicate that nA should display aminimum for some finite coupling strength

Î ( )g g g,m c1 c2 . Furthermore, as shown infigure 6 the two critical couplings approach one another for increasing
tS andfinallymerge, indicating that at sufficiently long times all neuronswill be active at any synaptic coupling
strength g.

The average frequency n̄ can be obtained analytically by following the approach described in appendix B for
LIF neuronswith instantaneous synapses subject to inhibitory Poissonian spike trains. In particular, the self-
consistent expression for the average frequency reads as

òn n n=¯ ( ) ( ¯ ) ( )
{ }

I P I I G nd , , , , 14
I

0 A
A

where the explicit expression of n0 is given by equation (31) in appendix B.
The simultaneous solution of equations (13) and (14)provides a theoretical estimation of nA and n̄ for the

whole considered range of synaptic strength, once the unknown time scale t0 isfixed. This time scale has been
determined via an optimal fitting procedure for sparse networkswithN=400 andK=20, 40, and 80 at afixed
integration time = ´t 1 10S

6. The results for nA are reported infigure 7(a). The estimated curves reproduce
reasonably well the numerical data forK=20 and 40, while forK=80 the agreement worsens at large coupling
strengths. This could be due to the fact that by increasing g andK, the spike trains stimulating each neuron
cannot be assumed to be completely independent, as done for the derivation of equations (13) and (14).
Nevertheless, the average frequency n̄ is quantitatively well reproduced for the consideredK values over the
entire range of synaptic strengths, as is evident fromfigures 7(b)–(d). Amore detailed comparison between the
theoretical estimations and the numerical data can be obtained by considering the distributions n( )P of the
single neuron firing rate for different coupling strengths reported in figures 7(k)–(m) forK=40. The overall
agreement can be considered asmore than satisfactory, while observable discrepancies are probably due to the
fact that our approach neglected a further source of disorder present in the system and related to heterogeneity in
the number of active pre-synaptic neurons [9].

We have also analytically estimated the average coefficient of variation of thefiring neurons CV by extending
themethod derived in [70] to obtain the response of a neuron receiving synaptic shot noise input. The analytic
expressions of the coefficient of variation for LIF neurons subject to inhibitory shot noise withfixed post-
synaptic amplitude are obtained by estimating the secondmoment of the associated first-passage-time
distribution; the details are reported in appendix C. The coefficient of variation can be estimated once the self-

Figure 6.Critical values gc1 (black) and gc2 (red) as calculated from equation (13),fixing =l 1.52 and for =l 1.21 (dash-dotted),
=l 1.151 (continuous), =l 1.11 (dashed), and =l 1.01 (dotted line). All values entering equation (13) are taken from simulation. All

other parameters used for the simulation are as infigure 1(b).
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consistent values for nA and n̄ have been obtained via equations (13) and (14). The comparisonwith the
numerical data, reported infigures 7(e)–(g), reveals a good agreement over thewhole range of synaptic strengths
for all considered in-degrees.

At sufficiently small synaptic coupling the neurons fire tonically and almost independently, as shown by the
raster plot infigure 7(h) and by the fact that n̄ approaches the average value for the uncoupled system (namely,
0.605) and CV 0. Furthermore, the neuronal firing rates are distributed toward finite values, indicating that
the inhibition has aminor role in this case, as shown infigure 7(k). By increasing the coupling, nA decreases, and
as an effect of the inhibitionmore andmore neurons are silenced (as evident from figure 7(l)) and the average
firing rate decreases; at the same time, the dynamics become slightlymore irregular, as shown infigure 7(i). At
large coupling >g gm, a new regime appears, where almost all neurons become active butwith extremely slow
dynamics that are essentially stochastic with CV 1, as also testified by the raster plot reported infigure 7(j) and
by thefiring rate distribution shown infigure 7(m).

Furthermore, from figure 7(a) it is clear that theminimumvalue of the fraction of active neurons nAm

decreases by increasing the network in-degreeK, while gm increases withK. This behavior is further investigated
in a larger network, namelyN=1400, and reported in the inset offigure 8. It is evident that nA stays close to the
globally coupled solutions over larger and larger intervals for increasingK. This can be qualitatively understood
by the fact that the current fluctuations in equation (10), responsible for the rebirth of silent neurons, are
proportional to g and scales as K1 . Therefore, at larger in-degrees the fluctuations have similar intensities
only for larger synaptic coupling.

Figure 7. (a) Fraction of active neurons nA as a function of inhibition for several values ofK. (b–d)Average network firing rate n̄ for the
same cases depicted in (a), and the corresponding CV (e–f). In all panels,filled symbols correspond to numerical data, and dashed
lines correspond to semi-analytic values: black circles correspond toK=20 ( t =t 11s 0 ), red squares toK=40 ( t =t 19s 0 ), and
blue diamonds toK=80 ( t =t 26.6s 0 ). The data are averaged over a time interval = ´t 1 10S

6 and 10 different realizations of the
randomnetwork. (h–j)Raster plots for three different synaptic strengths forN=400 andK=40: namely, (h) =g 0.1, (i) g=1, and
(j) g=8. The corresponding value for the fraction of active neurons, average frequency, and average coefficient of variation are

= ( )n 0.94, 0.76, 0.88A , n =¯ ( )0.55, 0.34, 0.10 , and = ( )CV 0.04, 0.27, 0.76 , respectively. The neurons are ordered in terms of their
intrinsic excitability, and the time is rescaled by the average frequency n̄ . (k–l)Probability distributions n( )P of the single neuron
firing rate ν, for the same values of g in the panels above. Empty-discontinuous bars correspond to the theoretical predictionwhile
filled bars indicate the histogram calculatedwith the simulation. The remaining parameters are as in figure 1(b).
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The generalmechanismbehind neuronal rebirth can be understood by considering the values of the effective
neuronal input and current fluctuations as a function of g. As shown infigure 4, the effective input current m̄A,
averaged over the active neurons, essentially coincides with the average excitability ĪA for g 0, where the
neurons can be considered as independent fromothers. The inhibition leads to a decrease of m̄A, and to a
crossing of the threshold θ at exactly =g gm. This indicates that at <g gm the active neurons, being on average
supra-threshold, fire almost tonically inhibiting the losers via aWTAmechanism. In this case the firing neurons
are essentiallymean-driven and the current fluctuations play a role in the rebirth of silent neurons only on
extremely long time scales; this is confirmed by the low values of s̄ in such a range, as evident from figure 4.On
the other hand, for >g gm, the active neurons are nowon average below thresholdwhilefluctuations dominate
dynamics. In particular, thefiring is now extremely irregularmainly due to re-activation processes. Therefore,
the origin of theminimum in nA can be understood as a transition from amean-driven to afluctuation-driven
regime [68].

A quantitative definition of gm can be given by requiring that the average input current of the active neurons

m̄A crosses the threshold θ at =g gm, namely

m n q= - =¯ ( ) ¯ ¯g I g n ,A m A m m Am

where ĪA is the average excitability of the firing neurons, while nAm and n̄m are the fraction of active neurons and
the average frequency at theminimum.

For a uniformdistribution P(I), a simpler expression for gm can be derived, namely

n
q

=
-

+ --
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Wehave compared the numericalmeasurements of gmwith the estimations obtained by employing
equation (15), where nAm

and n̄ are obtained from the simulations. As shown infigure 8, for a network of size
N= 1400, the overall agreement ismore than satisfactory for in-degrees ranging over almost two decades
(namely, for  K20 600). This confirms that our guess (that theminimum nAm

occurs exactly at the
transition frommean-driven tofluctuation-driven dynamics) is consistent with the numerical data for awide
range of in-degrees.

It should be stressed that, as we have verified for various system sizes (namely,N = 700, 1400, and 2800) and
for a constant average in-degreeK=140, for instantaneous synapses the network is in an heterogeneous
asynchronous state for all considered values of synaptic coupling. This is demonstrated by the fact that the
intensity of the fluctuations of average firing activity,measured by considering the low-pass filtered linear
superposition of all the spikes emitted in the network, vanishes as N1 [85]. Therefore, the observed transition
at =g gm is not associatedwith the emergence of irregular collective behaviors as reported for globally coupled
heterogeneous inhibitory networks of LIF neuronswith delay [42] or pulse-coupled phase oscillators [82].

Figure 8. gm as a function of the in-degreeK. The symbols refer to numerical data, while the dashed line refers to expression (15). Inset:
nA versus g for the fully coupled case (solid black line) and for diluted networks (dashed lines); from top to bottomK=20, 40, 80, and
140. A network of sizeN=1400 is evolved during a period = ´t 1 10S

5 after discarding a transient of 106 spikes, and the data are
averaged over 5 different random realizations of the network.Other parameters are as infigure 1.

11

New J. Phys. 19 (2017) 053011 DAngulo-Garcia et al



5. Effect of synapticfiltering

In this sectionwewill investigate how synaptic filtering can influence the previously reported results. In
particular, wewill consider non-instantaneous IPSPwith anα-function profile(3), whose evolution is ruled by
a single time scale ta.

5.1. Fully coupled networks
Let usfirst examine the fully coupled topology. In this case we analogously observe the δ-pulse coupling by
increasing the inhibition so that the number of active neurons steadily decreases toward a limit where only few
neurons (or eventually only one)will survive. At the same time the average frequency also decreases
monotonically, as shown infigure 9 for two different ta differing by almost two orders ofmagnitude.
Furthermore, themeanfield estimations (7) and (8) obtained for nA and n̄ represent a very good approximation
forα-pulses (as shown infigure 9). In particular, themeanfield estimation essentially coincides with the
numerical values for slow synapses, as evident from the data reported infigure 9 for t =a 10 (blackfilled circles).
This can be explained by the fact that for sufficiently slow synapses, with t > T̄P ISI, the neurons feel the synaptic
input current as continuous because each input pulse has essentially no time to decay between twofiring events.
Therefore, themeanfield approximation for the input current(4)works well in this case. This is particularly
true for t =a 10, where t = 20P and -T̄ 2 6ISI in the range of the considered coupling.While for
t =a 0.125, we observe some deviation from themeanfield results (red squares infigure 9). The reason for these
discrepancies resides in the fact that t < T̄P ISI for any coupling strength, and therefore the discreteness of the
pulses cannot be completely neglected, particularly for large amplitudes (large synaptic couplings). This is
analogous towhat is observed for instantaneous synapses.

5.2. Sparse networks
For sparse networks, nA has the same qualitative behavior as a function of the synaptic inhibition observed for
instantaneous IPSPs, as shown infigure 9(b) andfigure 10(a). The value of nA decreases with g and reaches a
minimal value at gm; afterwards, it increases towards nA= 1 at larger coupling. The origin of theminimumof nA
as a function of g is the same as for instantaneous synapses. For <g gm, active neurons are subject to, on average,
a supra-threshold effective input m̄A while at larger coupling m q<¯A , as shown in the inset offigure 10(b). This is
true for any value of ta; however, this transition frommean- tofluctuation-driven dynamics becomes dramatic
for slow synapses. As evidenced from the data for the average outputfiring rate n̄ and the average coefficient of
variation CV , these quantities have almost discontinuous jumps at =g gm, as shown infigure 11.

Therefore, let usfirst concentrate on slow synapses with ta larger than themembrane time constant, which is
one for adimensional units. For <g gm the fraction of active neurons is frozen in time, at least on the considered
time scales, as revealed by the data infigure 9(b). Furthermore, for <g gm, themean field approximation
obtained for the fully coupled case works almost perfectly both for nA and n̄ , as reported infigure 10(a). The
frozen phase is characterized by extremely small values of currentfluctuations s̄ (as shown figure 10(b)) and a
quite highfiring rate n -¯ 0.4 0.5 with an associated average coefficient of variation CV of almost zero (see
black circles and red squares infigure 11). Instead, for >g gm the number of active neurons increases in time

Figure 9. Fraction of active neurons nA as a function of inhibitionwith IPSPs withα-profiles for (a) a fully coupled topology and (b) a
sparse networkwithK=20. (a)Black (red) symbols correspond to t =a 10 (t =a 0.125), while dashed lines are theoretical
predictions (7) and (8) previously reported for instantaneous synapses. The data are averaged over a timewindow = ´t 1 10S

5. Inset:
average frequency n̄ as a function of g. (b) nA ismeasured at successive times: from lower to upper curves, the considered times are
= { }t 1000, 5000, 10000, 50000, 100000S , while t =a 10. The system size isN=400 in both cases, the distribution of excitabilities

is uniformwith =[ ] [ ]l l, 1.0, 1.51 2 , and q = 1.
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similarly towhat is observed for instantaneous synapses, while the average frequency becomes extremely small
n -¯ 0.04 0.09 and the value of the coefficient of variation becomes definitely larger than one.

These effects can be explained by the fact that below gm the active neurons (thewinners) are subject to an
effective input m q>¯A that induces a quite regularfiring, as testified by the raster plot displayed infigure 10(c).
The supra-threshold activity of thewinners joined together with the filtering action of the synapses guarantee
that on average each neuron in the network receives an almost continuous current with smallfluctuations in
time. These results explainwhy themean field approximation still works in the frozen phase, where fluctuations
in synaptic currents are essentially negligible and unable to induce any neuronal rebirth, at least on realistic time

Figure 10. (a) Fraction of active neurons for a network ofα-pulse-coupled neurons as a function of g for various ta: namely, t =a 10
(black circles), t =a 2 (red squares), t =a 0.5 (blue diamonds), and t =a 0.125 (green triangles). For instantaneous synapses, the
fully coupled analytic solution is reported (solid line), as well as themeasured nA for the sparse networkwith same level of dilution and
estimated over the same time interval (dashed line). (b)Average fluctuations of the synaptic current s̄ versus g for ISPSswithα-
profiles; the symbols refer to the same ta as in panel (a). Inset: Average input current m̄A of the active neurons versus g, where the
dashed line is the threshold value q = 1. The simulation time has beenfixed to = ´t 1 10S

5. (c–d)Raster plots for two different
synaptic strengths for t =a 10: namely, (c) g=1 corresponds to n 0.52A , n ¯ 0.45, and ´ -CV 3 10 4; while (i) g=10 to
n 0.99A , n ¯ 0.06, and CV 4.1. The neurons are ordered according to their intrinsic excitability and the time is rescaled by the

average frequency n̄ . The datawere obtained for a system sizeN=400 andK=20, and other parameters are as infigure 9.

Figure 11. (a)Average firing rate n̄ versus g for a network ofα-pulse-coupled neurons, for four values of ta. Theoretical estimations
for n̄ calculatedwith the adiabatic approach (45) are reported as dashed lines of colors corresponding to the relative symbols. (b)
Average coefficient of variation CV for four values of ta as a function of inhibition. The dashed line refers to the values obtained for
instantaneous synapses and a sparse networkwith the same value of dilution. (c)Average T̄ISI (filled black circles) as a function of g for
t =a 10. For >g gm the average inter-burst interval (empty circles) and the average ISImeasuredwithin bursts (gray circles) are also
shown, together with the position of gm (green vertical line). The symbols and colors denote the same ta values as infigure 10. All the
reported data were calculated for a system sizeN=400 andK=20 and for afixed simulation time of = ´t 1 10S

5.
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scales. In this regime the onlymechanism in action is theWTA, and fluctuations begin to have a role for slow
synapses only for >g gm. Indeed, as shown infigure 10(b), the synaptic fluctuations s̄ for t =a 10 (black
circles) are almost negligible for <g gm and show an enormous increase of almost two orders ofmagnitude at
=g gm. Similarly, at t =a 2 (red square) a noticeable increase of s̄ is observable at the transition.
In order to better understand the abrupt changes in n̄ and CV observable for slow synapses at =g gm, let us

consider the case t =a 10. As shown infigure 11(c), t > -T̄ 2 3P ISI for <g gm. Therefore, for these
couplings the IPSPs have no time to decay between a firing emission and the next one, and thus the synaptic
fluctuations s̄ are definitely small in this case. At gm an abrupt jump is observable to large values where t>T̄ISI P,
which is due to the fact that now the neurons display bursting activities, as evident from the raster plot shown in
figure 10(d). The bursting is due to the fact that, for >g gm, the active neurons are subject to an effective input,
which is on average sub-threshold; therefore, the neurons tend to be silent. However, due to current
fluctuations, a neuron can pass the threshold and silent periods can be interrupted by bursting phaseswhere the
neuron fires almost regularly. In fact, the silent (inter-burst) periods are very long -700 900 compared to the
duration of the bursting periods, namely -25 50, as shown infigure 11(c). This explains the abrupt decrease
of the average firing rate reported infigure 11(a). Furthermore, the inter-burst periods are exponentially
distributedwith an associated coefficient of variation -0.8 1.0, which clearly indicates the stochastic nature
of the switching from the silent phase to the bursting phase. Thefiring periodswithin the bursting phase are
instead quite regular, with an associated coefficient of variation0.2, andwith a duration similar to T̄ISI

measured in the frozen phase (shaded gray circles infigure 11(c)). Therefore, above gm the distribution of the ISI
exhibits a long exponential tail associatedwith the bursting activity, and this explains the very large values of the
measured coefficient of variation. By increasing coupling, thefluctuations in the input current become larger,
and thus the fraction of neurons that fires at least oncewithin a certain time interval increases. At the same time,
n̄ , the average inter-burst periods, and the firing periodswithin the bursting phase remain almost constant at
>g 10, as shown infigure 11(a). This indicates that the decrease of m̄A and increase of s̄ due to the increased

inhibitory coupling essentially compensate for each other in this range. Indeed, we have verified that for t =a 10
and t =a 2, m̄A (s̄) decreases (increases) linearly with gwith similar slopes, namely m -¯ g0.88 0.029A

while s +¯ g0.05 0.023 .
For faster synapses, the frozen phase is no longer present. Furthermore, due to rebirths induced by current

fluctuations, nA is always larger than the fully coupledmeanfield result (8), even at <g gm. It is interesting to
notice that by decreasing ta, we are now approaching the instantaneous limit, as indicated by the results
reported for nA infigure 10(a) and CV infigure 11(b). In particular, for t =a 0.125 (green triangles) the data
almost collapses on the corresponding valuesmeasured for instantaneous synapses in a sparse networkwith the
same characteristics and over a similar time interval (dashed line). Furthermore, for fast synapses with t <a 1
the bursting activity is no longer present, as can be appreciated by the fact that atmost CV approaches one in the
very large coupling limit.

For sufficiently slow synapses, the average firing rate n̄ can be estimated by applying the so-called adiabatic
approach developed byMoreno-Bote and Parga in [50, 51]. Thismethod applies to LIF neuronswith a synaptic
time scale longer than themembrane time constant. In these conditions, the outputfiring rate can be
reproduced by assuming that the neuron is subject to an input current with time-correlated fluctuations, which
can be represented as colored noise with a correlation time given by the pulse duration t t= a2P (formore
details see appendixD). In this case we are unable to develop a self-consistent approach to obtain at the same
time nA and the average frequency.However, once nA is provided by simulations, the estimated solution to (45)
obtainedwith the adiabatic approach gives very good agreementwith the numerical data for sufficiently slow
synapses, namely for t 1P , as shown infigure 11(a) for t =a 10, 2, and 0.5. The theoretical expression (45) is
even able to reproduce the jump in average frequencies observable at gm, and can therefore capture the bursting
phenomenon. By considering t < 1P , as expected, the theoretical expression fails to reproduce the numerical
data, particularly at large coupling (see the dashed green line infigure 11(a) corresponding to t =a 0.125).

By following the arguments reported in [50], the bursting phenomenon observed for t >a 1 and >g gm can
be interpreted at ameanfield level as the response of a sub-threshold LIF neuron subject to colored noise with
correlation tP. In this case, the neuron is definitely sub-threshold, but in the presence of a largefluctuation it can
lead tofiring, and due to thefinite correlation time, it can remain supra-threshold regularly firing for a period
t P. The validity of this interpretation is confirmed by the fact that themeasured average bursting periods are of

the order of the correlation time t t= a2P , namely, -27 50 ( -7 14) for t =a 10 (t =a 2).
As a final point, to better understand the dynamical origin of themeasuredfluctuations in this deterministic

model, we have estimated themaximal Lyapunov exponentλ. As expected fromprevious analysis, for non-
instantaneous synapses we can observe the emergence of regular chaos in purely inhibitory networks [1, 30, 89].
In particular, for sufficiently fast synapses, we typically note a transition from a chaotic state at low coupling to a
linearly stable regime (with l < 0) at large synaptic strengths, as shown infigure 12(a) for t =a 0.125. This is
despite the fact that currentfluctuations aremonotonically increasingwith synaptic strength. Therefore,
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fluctuations are due to chaos at small coupling, while at larger g they are due tofinite amplitude instabilities, as
expected for stable chaotic systems [3]. However, the passage frompositive to negative values of themaximal
Lyapunov exponent is not related to the transition occurring at gm frommean-driven to afluctuation-driven
dynamics in the network.

For slow synapses,λ is essentially zero at small coupling in the frozen phase, characterized by tonic spiking of
the neurons, but becomes positive by approaching gm. For larger synaptic strengthsλ, after reaching amaximal
value, it decreases and eventually becomes negative at g gm, as reported infigures 12(b)–(c). Only for
extremely slow synapses, as shown infigure 12(c) for t =a 10, the chaos onset seems to coincide with the
transition occurring at gm. Thesefindings are consistent with recent results concerning the emergence of
asynchronous rate chaos in homogeneous inhibitory LIF networkswith deterministic [26] and stochastic [31]
evolution.However, a detailed analysis of this aspect goes beyond the scope of the present paper.

6.Discussion

In this paper we have shown that the effect reported in [1, 66] is observable whenever two sources of quenched
disorder are present in the network: namely, a randomdistribution of neural properties and a random topology.
In particular, we have shown that neuronal death due to synaptic inhibition is observable only for heterogeneous
distributions of neural excitabilities. Furthermore, in a globally coupled network the less excitable neurons are
silenced for increasing synaptic strength until only one or few neurons remain active. This scenario corresponds
to theWTAmechanism via lateral inhibition, which has often been invoked in neuroscience to explain several
brain functions [88].WTAmechanisms have been proposed tomodel hippocampal CA1 activity [16], as well as
to be at the basis of visual velocity estimates [24], and to be essential for controlling visual attention [28].

However,most brain circuits are characterized by sparse connectivity [10, 38, 60], and in these networks we
have shown that an increase in inhibition can lead froma phase dominated by neuronal death to a regimewhere
neuronal rebirths occur. Therefore, the growth of inhibition can have the counter-intuitive effect to activate
silent neurons due to the enhancement of currentfluctuations. The reported transition is characterized by a
passage from a regime dominated by the almost tonic activity of a group of neurons, to a phase where sub-
thresholdfluctuations are at the origin of the irregular firing of a high number of neurons in the network. For
instantaneous synapses, the first and secondmoment of the firing distributions have been obtained together
with the fraction of active neurons using ameanfield approach, where the neuronal rebirth is interpreted as an
activation process driven by synaptic shot noise [70].

For afinite synaptic time smaller than the characteristicmembrane time constant, the scenario is similar to
that observed for instantaneous synapses.However, the transition frommean-driven tofluctuation-driven
dynamics becomes dramatic for sufficiently slow synapses. In this situation one observes for low synaptic
strength a frozen phase, where synaptic filteringwashes out the currentfluctuations, thus leading to extremely
regular dynamics controlled only by aWTAmechanism. As soon as the inhibition is sufficiently strong to lead
the active neurons below threshold, neuronal activity becomes extremely irregular, exhibiting long silent phases
interrupted by bursting events. The origin of these bursting periods can be understood in terms of the emergence
of correlations in current fluctuations induced by the slow synaptic time scale, as explained in [50].

In ourmodel, the randomdilution of network connectivity is a fundamental ingredient to generate current
fluctuations, whose intensity is controlled by the average network in-degreeK. A natural question is whether the
reported scenario will remain observable in the thermodynamic limit. On the basis of previous studies we can
affirm that this depends on howK scales with the system size [22, 41, 75]. In particular, ifK stays finite for

 ¥N the transitionwill remain observable. ForK divergingwithN, thefluctuations become negligible for

Figure 12.Maximal Lyapunov exponentλ versus g for a network ofα-pulse-coupled neurons, for (a) t =a 0.125, (b) t =a 2, and (c)
t =a 10. The blue dashed vertical line denotes the gmvalue. All the reported datawere calculated for a system sizeN=400 and
K=20 and for simulation times  ´ ´t5 10 7 104

S
5, thus ensuring a good convergence ofλ to its asymptotic value. The other

parameters are as infigure 9.
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sufficiently large system sizes, impeding neuronal rebirths, and the dynamics will be controlled only by theWTA
mechanism.

An additional source of randomness present in the network is related to the variability in the number of
active pre-synaptic neurons. In ourmeanfield approachwe have assumed that each neuron is subject to n KA

spike trains; however, this is true only on average. The number of active pre-synaptic neurons is a random
variable binomially distributedwith average n KA and variance -( )n n K1A A . Future developments of the
theoretical approach reported here should include also such variability inmodeling network dynamics [9].

Furthermore, we show that the consideredmodel is not chaotic for instantaneous synapses; in such a case,
we observe irregular asynchronous states due to stable chaos [63]. The system can become truly chaotic for only
finite synaptic times [3, 30]. However, we report clear indications that for synapses faster than themembrane
time constant tm the passage frommean-driven tofluctuation-driven dynamics is not related to the onset of
chaos. Only for extremely slow synapses dowe have numerical evidence that the appearance of the bursting
regime could be related to a passage froma zero Lyapunov exponent to a positive one. This is in agreement with
the results reported in [26, 31] for homogeneous inhibitory networks. These preliminary indications demand
more detailed investigations of deterministic spiking networks in order to relate fluctuation-driven regimes and
chaos onsets.Moreover, we expect that it will be hard to distinguishwhether the erratic currentfluctuations are
due to regular chaos or stable chaos on the basis of network activity analysis, as also pointed out in [30].

Concerning the biological relevance of the presentedmodel, we can attempt a comparisonwith
experimental data obtained forMSNs in the striatum. This population of neurons is fully inhibitory with sparse
lateral connections (connection probability;10%–20% [77, 81]) that are unidirectional and relatively weak
[78]. Furthermore, forMSNswithin the same collateral network the axonal propagation delays are quite small
;1–2ms [76] and can be safely neglected. The dynamics of these neurons in behavingmice reveals a low average
firing ratewith irregularfiring activity (bursting)with an associated large coefficient of variation [47]. Aswe have
shown, these features can be reproduced by sparse networks of LIF neuronswith sufficiently slow synapses at
>g gm and t t>a m. For values of themembrane time constant that are comparable to thosemeasured for

MSNs [59, 61] (namely, t  –10 20m msec), themodel is able to capture some of themain aspects ofMSNs
dynamics, as shown in table 1.We obtain a reasonable agreement with the experiments for sufficiently slow
synapses, where the interaction amongMSNs ismainlymediated byGABAA receptors, which are characterized
by IPSP durations of the order of;5–20ms [34, 81]. However, apart the burst duration, which is definitely
shorter, all other aspects of theMSNdynamics can be already captured for t t=a 2 m (with t = 10m ms), as
shown in table 1. Therefore, we can safely affirm, as also suggested in [66], that the fluctuation-driven regime
emerging at >g gm is themost appropriate in order to reproduce the dynamical evolution of this population of
neurons.

Other inhibitory populations are present in the basal ganglia. In particular, two coexisting inhibitory
populations, arkypallidal (Arkys) and prototypical (Protos)neurons, have been recently discovered in the
external globus pallidus [43]. These populations have distinct physiological and dynamical characteristics, and
have been shown to be fundamental for action suppression during the performance of behavioral tasks in
rodents [44]. Protos are characterized by a highfiring rate47 Hz and a not too large coefficient of variation
(namely, CV 0.58) both in awake and slowwave sleep (SWS) states;meanwhile, Arkys have clear bursting
dynamics with CV 1.9 [18, 44]. Furthermore, thefiring rate of Arkys is definitely larger in the awake state
(namely,9 Hz)with respect to the SWS state, where firing rates are –3 5 Hz [44].

On the basis of our results, on the one hand, Protos can bemodeled as LIF neuronswith reasonably fast
synapses in amean-driven regime, namelywith synaptic coupling <g gm. On the other hand, Arkys should be
characterized by IPSPwith definitely longer durations, and should be in afluctuation-driven phase as suggested
from the results reported infigure 11. Since, as shown infigure 11(a), thefiring rate of inhibitory neurons
decreases by increasing synaptic strength g, we expect that the passage from awake to SWS should be
characterized by a reinforcement of Arkys synapses. Our conjectures about Arkys and Protos synaptic properties
based on their dynamical behaviors ask for experimental verification, whichwe hopewill happen shortly.

Table 1.Comparison between the results obtained for slowα-synapses and experimental data forMSNs. The numerical data refer
to results obtained in the bursting phase, namely for synaptic strength g in the range [ ]10: 50 , for simulation times = ´t 1 10S

5,
N=400, andK=20. The experimental data refer toMSNs population in the striatumof free behaving wild typemice [47].

t ta m tm (msec) Spike rate (Hz) CV Burst duration (msec) Spike rate within bursts (Hz)

2 10 4–6 1.8 100±40 42±2
20 2–3 1.8 200±80 21±1

10 10 4–6 4.2 400±150 41±2
20 2–3 4.2 800±300 20±1

Experimental data 2–3 ;1.5–3 500–1100 31±15
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Besides the straightforward applicability of our findings to networks of pulse-coupled oscillators [48], it has
been recently shown that LIF networks with instantaneous and non-instantaneous synapses can be transformed
into theKuramoto–Daidomodel [17, 35, 62]. Therefore, we expect that our findings should extend to phase
oscillator arrayswith repulsive coupling [79]. This will allow for awider applicability of our results, due to the
relevance of limit-cycle oscillators not only formodeling biological systems [86], but also formany scientific and
technological applications [19, 58, 71, 74].
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AppendixA. Event drivenmaps

By following [53, 91] the ordinary differential equations (1) and (2) describing the evolution of themembrane
potential of neurons can be rewritten exactly as discrete timemaps connecting successivefiring events occurring
in the network. In the followingwewill explicitly report such event drivenmaps for the case of instantaneous
andα-synapses.

For instantaneous PSPs, the event drivenmap for neuron i takes the following expression:

+ = + - -- -d d( ) ( ) ( ) ( )v n v n I
g

K
C1 e 1 e , 16i i

T
i

T
im

where the sequence offiring times { }tn in the network is denoted by the integer indices { }n ,m is the index of the
neuron firing at time +tn 1, and º -d +T t tn n1 is the ISI associatedwith two successive neuronal firings. This
latter quantity is calculated from the following expression:

=
-
-

d
⎡
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⎤
⎦⎥ ( )T

I v

I
ln

1
. 17m m

m

Forα-pulses, the evolution of the synaptic currentEi(t), stimulating the i-th neuron can be expressed in
terms of a second-order differential equation, namely
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Equation (18) can be rewritten as twofirst-order differential equations by introducing the auxiliary variable
aº -˙Q E Ei i, namely

åa a
a

d= - = - + -
<

˙ ˙ ( ) ( )
∣

E Q E Q Q
K

C t t, 19i i i i i
n t t

ij n

2

n

Finally, equations (1) and (19) can be exactly integrated from the time tn, just after delivery of the n-th pulse,
to time +tn 1 corresponding to the emission of the +( )n 1 -th spike, to obtain the following event drivenmap:

a
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In this case, the ISI º -a +T t tn n1 should be estimated by solving the following expression:
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where the explicit expression forHi(n) appearing in equations (20c) and (21) is
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Themodel so far introduced contains only adimensional units; however, the evolution equation for the
membrane potential (1) can be easily re-expressed in terms of dimensional variables as follows:

t t= - - = ˙ (˜) ˜ (˜) ˜ ˜ (˜) ( )V t I V t gE t i N1, , , 23i i j im m

wherewe have chosen t = 10m ms as themembrane time constant, and Ĩi represents the neural excitability and
external stimulation. Furthermore, t=˜ ·t t m, and the field t=Ẽ Ei i m has the dimensionality of a frequency
and g̃ of a voltage. The currents {˜}Ii also have the dimensionality of a voltage since they include themembrane
resistance.

For the other parameters/variables the transformation to physical units is simply given by

= + -( ) ( )V V V V v , 24i ir th r

= + -˜ ( ) ( )I V V V I , 25i ir th r

= -˜ ( ) ( )g V V g , 26th r

where = -V 60r mVand = -V 50th mVare realistic values of themembrane reset and threshold potential. The
isolated i-th LIF neuron is supra-thresholdwhenever >Ĩ Vi th.

Appendix B. Averagefiring rate for instantaneous synapses

In this appendix, by following the approach in [70]wederive the average firing rate of a supra-threshold LIF
neuron subject to inhibitory synaptic shot noise of constant amplitudeG, namely

åd= - - -˙ ( ) ( ) ( ) ( )
{ }

v t I v t G t t , 27
t

k

k

where >I 1.The post-synaptic pulses reaching the neuron are instantaneous and their arrival times are Poisson-
distributed and characterized by a rateR. In order tofind thefiring rate response of the LIF neuronwe introduce
the probability density P(v) and theflux J(v) associatedwith themembrane potentials. These satisfy the following
continuity equation:

r d d q
¶
¶

+
¶
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t

J

v
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where r ( )t is the instantaneous firing rate of the neuron. Theflux can be decomposed in an average drift term
plus the inhibitory part, namely

= - +( ) ( )J I v P J , 29inh
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The set of equations (28) to (30) is complemented by the boundary conditions

q r q q= = =( ) ( ) ( ) ( )J t t J t P t, , 0 , 0,inh

and by the requirement that themembrane potential distribution should be normalized, i.e

ò =
q

-¥
( )P v t dv, 1.

By introducing bilateral Laplace transforms ò=
-¥

¥˜( ) ( )f s v f vd esv and by performing some algebra along

the lines described in [70] it is possible to derive the analytic expression for the average firing rate
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where ˜ ( )Z s0 is the Laplace transformof the sub-threshold probability density. Namely, it reads as

= - +˜ ( ) [ ] ( )( )Z s C s e , 32R sI R Gs
0 0

where  ò= -
-

¥ -( ) /y t td e
y

t is the exponential integral, = - G+( )C e R G
0

ln is the normalization constant

ensuring that the distribution ( )Z v0 is properly normalized, andΓ is the Euler–Mascheroni constant.
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To validate thismethod and obtain the average firing frequency n̄ , we compare the theoretical estimates
given by (14)with numerical data obtained for sparse networkswith in-degreeK and instantaneous inhibitory
synapses. The agreement is quite remarkable, as shown infigure 13. In the same figure, the solidmagenta line
refers to the results obtained by employing the diffusion approximation [8, 9, 69, 80]: clear discrepancies are
already evident for g 1. In particular, for the diffusion approximation and the evaluation of (14)we assume
that each neuron receives a Poissonian spike trainwith an arrival rate given by n= ¯R n KA . Furthermore, it
should be stressed that in this case we test the quality of the approach described in this appendix versus the
diffusion approximation; therefore, nA, required to estimate n̄ , is obtained from the simulation and not derived
self-consistently as done in section 4.

AppendixC. Coefficient of variation for instantaneous synapses

In order to derive the coefficient of variation for the shot noise case it is necessary to obtain the first twomoments
of the first-passage-time density q(t). By following the same approach as in appendix B, the time-dependent
continuity equationwith initial condition =( )P v v, 0 r is written as

r d d q d d
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t

J

v
t v v v t v v . 33r r

As suggested in [70], equation (33) can be solved by performing a Fourier transform in time and a bilateral
Laplace transform inmembrane potential. This allows us to obtain the Fourier transformof the spike-triggered
rate, namely
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0 . The Fourier transformof the first-passage-time density is
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Since the integrals appearing in equation (34) cannot be exactly solved, we have expanded it to the second-order,
obtaining

r w
w w
w w
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2

0 1 2
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Figure 13.Average network frequency n̄ as a function of the synaptic strength g for instantaneous synapses and uniformdistributions
P(I)with support =[ ] [ ]l l, 1.0, 1.51 2 . Inset: average coefficient of variation CV versus g. Filled symbols refer to numerical simulation
forN=400 andK=20, dashed lines refer to the corresponding analytic solutions reported in appendices B andC, and solid
(magenta) lines refer to the diffusion approximation. The data have been averaged over a time interval = ´t 1 10S

6 after discarding a
transient of 106 spikes.
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where = -n 10 , =d 00 , n= -d ni1 0 0, and
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From expression (34)we can finally obtain thefirst and secondmoment of q(t), namely
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Once these quantities are known, the coefficient of variation can be easily estimated for each neuronwith
excitability I.

The results obtained for the average coefficient of variation CV for a sparse network are comparedwith
numerical data andwith the diffusion approximation in the inset offigure 13. It is evident that the
approximation derived here is definitelymore accurate than the diffusion approximation for synaptic strengths
larger than g 1.

AppendixD. Averagefiring rate for slow synapses

In section 5we have examined the average activity of the network for non-instantaneous IPSPswithα-function
profiles. In the presence of synaptic filtering, whenever the synaptic time constant is larger than themembrane
time constant, one can apply the so-called adiabatic approach to derive thefiring rate n0 of a single neuron, as
described in [50, 51].

In this approximation, the outputfiring rate n0 of the single neuron driven by a slowly varying stochastic
input current zwith an arbitrary distribution P(z) is given by

òn n ( ) ( ) ( )zP z zd , 410

where n ( )z is the input to rate transfer function of the neuron under a stationary inputwhich for the LIF neuron
is simply
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The synaptic filtering induces temporal correlations in the input current z, which can bewritten as
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Here ts is the synaptic correlation time. In the case ofα-pulses, where the rise and decay synaptic times coincide,
we can assume that the correlation time is given by t t t= = a2s P .

Analogous to the diffusion approximation [8, 9, 14], the input currents are approximated as aGaussian noise
withmeanμ and variance s s t= 2z

2
s. In our networkmodel, a single neuron receives an average currentμ

given by equation (4)with a standard deviation σ given by equation (10). In particular, the fraction of active
neurons nA entering in the expressions ofμ andσ is in this case obtained by numerical simulations.

Therefore, the single neuron outputfiring rate reads as

òn
ps q

=
-
-

-
-m

s

-

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥( ) ( )

( ( ))

I
z z v

z

d

2
e ln , 440

z

r
1z I 2

2 z
2

where I is the neuronal excitability.
The average firing rate of the LIF neurons in the network, characterized by an excitability distribution P(I),

can be estimated as
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wherewe impose the self-consistent condition that the average output frequency is equal to that of the average
input.
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