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Abstract. We consider the problem

u
00(x; t) = uxx(x; t) + �(t)

NX

k=1

�
k
�(x� �

k
); 0 < x < 1; 0 < t < T

u(x; 0) = u
0(x; 0) = 0; 0 < x < 1

u(0; t) = u(1; t) = 0; 0 < t < T;

where u
0(x; t) = @u

@t
(x; t), u00(x; t) = @

2
u

@t
2 (x; t), and � 2 C

1[0; T ], �
k
6= 0, 2 R, �

k
2

(0; 1), and �(� � �
k
) is Dirac's delta function at �

k
, 1 � k � n. Our task consists in

the determination of N , �
k
, �

k
, 1 � k � N from the boundary observation @u

@x
(0; t),

0 < t < T , where � and T > 0 are given. We prove the uniqueness, give a stability

estimate and provide a scheme for reconstructing �1, �2, �1, �2 from
@u

@x
(0; t), 0 < t < T

in the case N = 2.

x1. Introduction.
We discuss a wave equation with point dislocation sources:

u
00(x; t) = �u(x; t) + �(t)

NX
k=1

�k�(x� �k); x 2 
; 0 < t < T

u(x; 0) = u
0(x; 0) = 0; x 2 


u(x; t) = 0; x 2 @
; 0 < t < T:

Here u0(x; t) = @u
@t
(x; t), u00(x; t) = @2u

@t2
(x; t), 
 � R

r , r � 1, is a bounded domain

with C2-boundary, � is the Laplacian, � 2 C
1[0; T ], �k 2 R, �k 2 
, 1 � k � N and

�(�� �k) is Dirac's delta function at �k, that is, < �(�� �k); � >= �(�k) for � 2 C10 (
).

Here and henceforth < �; � > denotes the duality pairing between (C10 (
))0 and C10 (
)

and �0 denotes the dual space. Moreover we assume that �k 6= 0 and �k are distinct for

1 � k � N .

In this system, the N point sources are assumed to start the vibration. For instance,

this kind of point sources can be related with models in seismology (e.g., Aki and

Richards [1]).

Here we are engaged with the determination of point dislocation sources from bound-

ary measurements: Let � = �(t) and T > 0, � � @
 be given. Then determine N 2 N ,

�k 6= 0, 2 R, �k 2 
, 1 � k � N , from the normal derivative @u
@�
(x; t), x 2 �, 0 < t < T .

Our subjects are

(I) (Uniqueness) Does @u
@�
(x; t), x 2 �, 0 < t < T determine N 2 N , �k 2 R, �k 2 
,

1 � k � N uniquely?

(II) (Stability) Do small variations in @u
@�
(x; t), x 2 �, 0 < t < T , imply small

deviations in N , �k, �k?

(III) (Reconstruction of locations of sources) Can we reconstruct N , �k and �k,

1 � k � N from @u
@�
(x; t), x 2 �, 0 < t < T in a stable manner?

In this paper, we treat the one-dimensional case, that is, r = 1. With some modi�-

cation in terms of the observability inequality in the Hilbert Uniqueness Method (e.g.,
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Komornik [6], Lions [7]), we can extend our methodology to the multidimensional case.

The results here are announced without proofs in Bruckner and Yamamoto [2] where

Theorem 3 is, however, shown in a simpler form.

More precisely, we mainly consider

(1.1)

8>>>><
>>>>:
u
00(x; t) = uxx(x; t) + �(t)

NX
k=1

�k�(x� �k); 0 < x < 1; 0 < t < T

u(x; 0) = u
0(x; 0) = 0; 0 < x < 1

u(0; t) = u(1; t) = 0; 0 < t < T:

In the one-dimensional case, we observe the derivative @u
@x
(0; t), 0 < t < T and we study

(I) (Uniqueness) Does @u
@x
(0; t), 0 < t < T , determine N 2 N , �k 2 R, �k 2 (0; 1),

1 � k � N uniquely?

(II) (Stability) Do small variations in @u
@x
(0; t), 0 < t < T , imply small deviations in

N , �k, �k?

(III) (Reconstruction of locations of sources) Let us �x N 2 N . Can we give a

scheme for reconstructing �k 2 R, �k 2 (0; 1), 1 � k � N from @u
@x
(0; t), 0 < t < T?

In this paper, we adopt the observation at one end point x = 0. If we can make

observations at x = 0; 1, then we are able to sharpen some of our results by noting that

we can determine �k from the observation over the time interval, for which waves from

�k reach the nearest of both end points. In Bruckner and Yamamoto [3], we considered

an interior pointwise observation u(x0; t), 0 < t < T , at a �xed point x0 2 (0; 1)

for determining �k, and in this case uniqueness and stability are very sensitive to the

choice of x0. On the other hand, for the determination of L2-source functions, not delta

functions, in hyperbolic equations, we refer to Grasselli and Yamamoto [5], Yamamoto

[10], [11], [12].

If one takes the observation function from L
2(0; T ), our reconstruction problem is

well-posed. In the case of pointwise observations treated in [3], the analogous problem

was proved to be mildly ill-posed, and a regularization was considered. Moreover, in

this paper, the question of existence to the inverse problem is answered partially by

presenting a reconstruction scheme in a special case.

The remainder of this paper is composed of eight Sections. In x2 we discuss the

existence and regularity of solutions to the direct problem (1.1). In xx3-5, we give

answers to the questions of uniqueness, stability and reconstruction, respectively, for

the inverse problem. In x6, we show key lemmata needed for the proofs of our main

results announced in xx3-5. In xx7-9 we prove the main results.

x2. Existence and regularity of solutions to the direct problem.

Henceforth let us de�ne vectors P and Q by

(2.1)

(
P = fN;�1; ::::; �N ; �1; ::::; �Ng 2 N � R

N � (0; 1)N ;

Q = fM;�1; ::::; �M ; �1; ::::; �Mg 2 N � R
M � (0; 1)M
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with

(2.2)

�
�k 6= 0; 1 � k � N; 0 < �1 < :::: < �N < 1

�k 6= 0; 1 � k �M; 0 < �1 < :::: < �M < 1

and assume

(2.3) � 2 C1[0; T ]:

Then we show the

Proposition 1. For a given P , there exists a unique weak solution to (1.1):

u = u(P ) 2 C1([0; T ];L2(0; 1)) \ C0([0; T ];H1
0(0; 1)):

Proof. It is su�cient to assume that N = 1 and �1 = 1. We set u = u(P ). By the

eigenfunction expansion, the integration by parts and (2.3), we see that u is represented

by

u(x; t) =

1X
k=1

2

k2�2
sin k��1 sin k�x

�
�
�(t)� �(0) cos k�t�

Z t

0

�
0(t� s) cos k�sds

�
�

1X
k=1

sk(x; t)(2.4)

in the sense of distributions in (x; t). By Parseval's equality, we have
1X
k=1

@sk(x; t)

@x


2

L2(0;1)

<1:

This implies that the series
P1

k=1
@sk
@x

is convergent in L1(0; T ;H1
0(0; 1)), namely, we

see that u 2 C0([0; T ];H1
0(0; 1)). Similarly we can see that u 2 C1([0; T ];L2(0; 1)). For

our observation @u
@x
(0; t), 0 < t < T , we can prove the

Proposition 2.
@u

@x
(0; �) 2 L2(0; T ):

The proof is given in x6.

x3. Uniqueness.
For the uniqueness and the stability, the length T of observation time has to be large,

because of the �niteness of the wave propagation speed. Henceforth we always assume

(3.1) T � 1:

Moreover we assume

(3.2) � 2 C1[0; T ]; �(0) 6= 0:

In other words, T must be larger than one, equal to the travelling time of a wave from

x = 0 to x = 1. We are ready to state the
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Theorem 1 (Uniqueness). Under (2.1), (2.2), (3.1), (3.2), if

@u(P )

@x
(0; t) =

@u(Q)

@x
(0; t); 0 < t < T;

then P = Q, namely, M = N , �k = �k, �k = �k, 1 � k � N .

The condition (3.1) for T is the best possible. In fact, we can prove the

Proposition 3. For T < 1, let uT = uT (x; t) be the solution to

u
00(x; t) = uxx(x; t) + �(x� T ); 0 < x < 1; t > 0

u(x; 0) = u
0(x; 0) = 0; 0 < x < 1

u(0; t) = u(1; t) = 0; t > 0:

Then @uT
@x

(0; t) = 0, 0 < t < T .

Consequently for T < 1, the derivative @u
@x
(0; t), 0 < t < T , cannot distinguish the

source term �(� � T ) from �(� � T1) with T < T1 < 1.

x4. Stability.
Here for simplicity, we are concerned only with locations of point sources. That is, in

this Section we assume

(4.1) M = N; �k = �k; 1 � k � N:

Our purpose is to measure the \distance" between a pair of N point sources f�1; ::::; �Ng
and f�1; ::::; �Ng. We recall

0 � �0 < �1 < ::::: < �N < �N+1 � 1

0 < �1 < :::: < �N < 1:(4.2)

Henceforth we regard f�ig1�i�N and f�ig1�i�N as known and unknown point sources,

respectively. We would like to estimate f�ig1�i�N from f�ig1�i�N .
Let us choose an arbitrary � > 0 such that

(4.3) 0 < � <
1

2
min

1�i�N+1
j�i � �i�1j:

In order to obtain an actual estimate, we assume an a-priori information for

f�ig1�i�N :
(4.4) j�i � �ij � �; 1 � i � N:

The condition (4.4) implies that f�ig1�i�N and f�ig1�i�N separate and are not very

far mutually. By (4.3), we see

(4.5) (�; �j) � min
1�i�N+1

j�i � �i�1 � 2�j > 0:

Then we can state conditional stability in the sense that the constant in the estimate

depends on � > 0 and f�ig1�i�N .
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Theorem 2 (Conditional stability). Under (3.1), (3.2) and (4.1)-(4.4), there exists

a constant C = C(T; �) > 0 such that

NX
i=1

j�i � �ij � Cp
(�; �j)

@u(P )
@x

(0; �)� @u(Q)

@x
(0; �)


L2(0;T )

:

Here we note that (�; �j) is increasing as � ! 0, so that the constant in the estimate

is decreasing.

x5. Reconstruction.
In this Section, for the sake of simplicity, we treat only two point sources, although our

way is applicable to the reconstruction of many point sources:

(5.1) N = 2:

In a succeeding paper, we will consider the reconstruction in the general case. Let us

set

(5.2) P = f�1; �2; �1; �2g; �1; �2 2 R; 6= 0; 0 < �1 < �2 < 1;

and

(5.3)
@u(P )

@x
(0; t) = h(t); 0 < t < 1:

In (5.3) we notice: For the uniqueness, T � 1 is required (Theorem 1), so that it

is natural to consider the reconstruction in the case T = 1. Our task is to present

a scheme for calculating P = f�1; �2; �1; �2g from h. To this end, we introduce an

operator from L
2(0; 1) to L2(0; 1) by

(5.4) (Lf)(t) =

Z t

0

�
0(t� s)f(s)ds; 0 < t < 1:

Then by �(0) 6= 0, we see that �(�(0)+L)�1 corresponds to the solution of a Volterra

equation of the second kind, and therefore, �(�(0) +L)�1 is a bounded operator from

L
2(0; 1) to L2(0; 1). In this Section, for simplicity, we further assume

(5.5)

Z 1

0

((�(0) + L)�1�)(t)dt 6= 0:

Example. The condition (5.5) with (3.2) are satis�ed if

(5.6) �(t) = cos!t; t > 0 with ! 2 R

or

(5.7) �(t) =
�t+ c

c
; t > 0 with c 6= 0:
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In fact, in the both cases, we have ((�(0) + L)�1�)(t) = 1.

Henceforth we denote the L2(0; 1)-scalar product by (�; �): (�;  ) =
R 1
0
�(t) (t)dt.

Moreover, let for k � 0

(5.8) ek(t) = cos k�t

and

(5.9)  k(t) = ((�(0) + L
�)�1ek)(t);

where L� : L2(0; 1) �! L
2(0; 1) is the adjoint operator of L:

(L� )(t) =

Z 1

t

�
0(s� t) (s)ds; 0 < t < 1;

and (�(0)+L�)�1ek is equivalent to the solution  k of a Volterra equation of the second

kind:

�(0) k(t) +

Z 1

t

�
0(s� t) k(s)ds = cos k�t; 0 < t < 1:

We note that (5.5) is rewritten as

(5.5') (�;  0) 6= 0:

Now we can state the

Theorem 3 (Reconstruction). Assuming (5.1), (5.2) and (5.5') with (3.2), we have

the following equations with respect to �1, �2, �1 and �2:

(5.10) �1 sin k��1 + �2 sin k��2 = k�

�
(h;  0)

(�;  0)
(�;  k)� (h;  k)

�

for k � 1.

In particular, let us assume that the strength is one and that both point sources are

in the left half interval:

(5.11) �1 = �2 = 1; 0 < �1 < �2 � 1

2
:

Then (�1; �2) 2 (0; 1
2
]2 with �1 < �2 can be reconstructed from the data h(t), 0 < t < 1,

given by (5.3) as follows.

First Step. Calculate

(5.12)

8>><
>>:
a := �

(h;  0)

(�;  0)
(�;  1)� �(h;  1)

b := 3�
(h;  0)

(�;  0)
(�;  3)� 3�(h;  3):
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Second Step. Solve

(5.13) �
2 � a� +

b+ 4a3 � 3a

12a
= 0:

Let us denote the roots by �1, �2 and suppose �1 < �2.

Third Step.

(5.14) �1 =
1

�
Arcsin �1; �2 =

1

�
Arcsin �2:

This reconstruction is stable for L2(0; 1)-errors in the data
@u(P )

@x
(0; �) = h, which is

di�erent from the case of an interior pointwise observation (Bruckner and Yamamoto

[3]).

x6. Key lemmata.

In this Section, we establish three key lemmata for the proofs of Theorems 1 and 2.

Let us �rst introduce function spaces. Identifying L
2(0; 1) with its dual, we de�ne

H
�1(0; 1) by the dual of H1

0 (0; 1): H
�1(0; 1) = (H1

0 (0; 1))
0. Henceforth let k � kX be

the norm in a given Banach space X. Moreover let

(6.1) 0
H

1(0; T ) = fu 2 H1(0; T );u(T ) = 0g

be a Hilbert space with the norm

(6.2) k k0H1(0;T ) =

 Z T

0

 
0(t)2dt

! 1
2

:

Here we note that the norm k k0H1(0;T ) is equivalent to the norm k kH1(0;T ) =�R T
0
 (t)2 +  

0(t)2dt
� 1

2

for  20H1(0; T ). Let H�1(0; T ) be the dual of 0
H

1(0; T )

provided that the dual of L2(0; T ) is identi�ed with itself:

(6.3) 0
H

1(0; T ) � L
2(0; T ) � (0H1(0; T ))0 = H�1(0; T ):

Here the embeddings 0
H

1(0; T ) � L
2(0; T ) and L2(0; T ) � H�1(0; T ) are bounded and

dense.

We denote the duality pairing between H�1(0; T ) and
0
H

1(0; T ) by H
�1
<�; � >0H1 .

Then we have

(6.4) H
�1
<  ; u >0H1 = ( ; u)L2(0;T );  2 L2(0; T ); u 2 0

H
1(0; T ):

By the de�nition of H�1(0; T ), we have

(6.5) k kH
�1

= sup

(��
H
�1
<  ; � >0H1

�� ;� 2 0
H

1(0; T ); k�k0H1(0;T ) = 1

)
:
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Next, let us consider an auxiliary system:

(6.6)

8><
>:
v
00(x; t) = vxx(x; t); 0 < x < 1; 0 < t < T

v(x; 0) = 0; v
0(x; 0) = a(x); 0 < x < 1

v(0; t) = v(1; t) = 0; 0 < t < T;

where a 2 H�1(0; 1). There exists a unique weak solution

v = v(a) 2 C0([0; T ];L2(0; 1)) \ C1([0; T ];H�1(0; 1))

(e.g., Theorem 1.1 in Komornik [6], Theorem 3.8.2 in Lions and Magenes [8]). Further-

more, similarly to Th�eor�eme I.6.3 in Lions [7] (see also Grasselli and Yamamoto [5]),

we can prove the

Lemma 1. On the assumption (3.1), there exists a constant C1 > 0 independent of

a, such that

(6.7) C
�1
1 kakH�1(0;1) �

@v(a)
@x

(0; �)

H
�1(0;T )

� C1kakH�1(0;1)

for all a 2 H�1(0; 1).

Let us de�ne

(6.8) (K )(t) =

Z t

0

�(t� s) (s)ds; 0 < t < T

for  2 L2(0; T ). Then K is a bounded operator from L
2(0; T ) to itself. Moreover, we

have the

Lemma 2. Under the assumption (3.2), we can uniquely extend the operator

K : L2(0; T ) �! L
2(0; T ) to an operator de�ned on H�1(0; T ). Denoting the extended

operator again by K, we choose a constant C2 = C2(T; �) > 0 such that

(6.9) C
�1
2 kK kL2(0;T ) � k kH

�1(0;T ) � C2kK kL2(0;T );  2 H�1(0; T ):

Next, for � 2 C1[0; T ], we consider

(6.10)

8><
>:
u
00(x; t) = uxx(x; t) + �(t)a(x); 0 < x < 1; 0 < t < T

u(x; 0) = u
0(x; 0) = 0; 0 < x < 1

u(0; t) = u(1; t) = 0; 0 < t < T;

where a 2 H�1(0; 1). Then there exists a unique weak solution

u = u(a) 2 C0([0; T ];L2(0; 1)) \ C1([0; T ];H�1(0; 1))

(e.g., Theorem 3.8.2 in Lions and Magenes [8]). Moreover, we can prove Duhamel's

principle:
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Lemma 3.

u(a)(x; t) =

Z t

0

�(t� s)v(a)(x; s)ds; 0 < x < 1; 0 < t < T

for a 2 H�1(0; 1).

Proof of Lemma 2. First we show the

Lemma 4. Let us de�ne

(F�)(t) = �(0)�(t) +

Z T

t

�
0(s� t)�(s)ds; 0 < t < T

for � 2 0
H

1(0; T ). Then F is surjective and an isomorphism from 0
H

1(0; T ) to
0
H

1(0; T ).

Proof of Lemma 4. Since F is a Volterra operator of the second kind, we easily see

that

C
�1
3 kF�k0H1(0;T ) � k�k0H1(0;T ) � C3kF�k0H1(0;T ); � 2 0

H
1(0; T )

where the constant C3 = C3(T; �) > 0 is independent of �. Finally (F�)(T ) =

�(0)�(T ) = 0 if � 2 0
H

1(0; T ), so that F is seen to be surjective. The proof of

Lemma 4 is complete.

Now we will complete the proof of Lemma 2. Let  2 L2(0; T ) and � 2 0
H

1(0; T ).

Then we have

((K )0; �)L2(0;T ) =

Z T

0

(�(0) (t) +

Z t

0

�
0(t� s) (s)ds)�(t)dt

=

Z T

0

�(0) (t)�(t)dt+

Z T

0

 (s)

 Z T

s

�
0(t� s)�(t)dt

!
ds

by change of orders of integrations:
R T
0

�R t
0
ds

�
dt =

R T
0

�R T
s
dt

�
ds. Therefore, recall-

ing the de�nition of F , we obtain

((K )0; �)L2(0;T ) = ( ; F�)L2(0;T ):

On the other hand, for  2 L
2(0; T ) and � 2 0

H
1(0; T ), since (K )(0) = �(T ) = 0,

the application of integration by parts yields

((K )0; �)L2(0;T ) = �(K ; � 0)L2(0;T ):

Consequently we obtain

(6.11) (K ; � 0)L2(0;T ) = �( ; F�)L2(0;T );  2 L2(0; T ); � 2 0
H

1(0; T ):



10 G. BRUCKNER AND M. YAMAMOTO

By (6.4) and the de�nition (6.5) of k kH
�1(0;T ), we have

k kH
�1(0;T ) = sup

k�k0H1(0;T)=1

j( ; �)L2(0;T )j

for  2 L2(0; T ). By Lemma 4, there exists a constant C4 = C4(T; �) > 0 such that

(6.12) C
�1
4 k kH

�1(0;T ) � sup
k�k0H1(0;T )

=1

j( ; F�)L2(0;T )j � C4k kH
�1(0;T ):

On the other hand, by (6.2) and (6.11), we have

kK kL2(0;T ) = sup
k�kL2(0;T )=1

j(K ; �)L2(0;T )j

= sup
k�k0H1(0;T )

=1

j(K ; � 0)L2(0;T )j = sup
k�k0H1(0;T)

=1

j( ; F�)L2(0;T )j:

Therefore, from (6.12) we obtain

(6.13) C
�1
4 k kH�1(0;T ) � kK kL2(0;T ) � C4k kH�1(0;T );  2 L2(0; T ):

Since L2(0; T ) is dense in H�1(0; T ), the inequalities (6.13) imply that we can uniquely

extend K : L2(0; T ) �! L
2(0; T ) to a bounded operator de�ned on H�1(0; T ) to

L
2(0; T ) and that (6.13) is true for all  2 H�1(0; T ). Thus the proof of Lemma 2 is

complete.

Proof of Lemma 3. For smooth a, this is nothing but Duhamel's principle. In fact,

if a 2 C
1
0 (0; 1), then we can directly verify that the right hand side satis�es (6.10).

For a 2 H�1(0; 1), noting that C10 (0; 1) is dense in H�1(0; 1), by the regularity of u(a)

and v(a), we can complete the proof of Lemma 3.

x7. Proof of Theorem 1.

By Sobolev's embedding, we see that a � PN

k=1 �k�(� � �k), b �
PM

k=1 �k�(� � �k) 2
H
�1(0; 1). By Lemmata 1 and 3, we have

(7.1)

�
@u(a)

@x
� @u(b)

@x

�
(0; �) = K

�
@v(a)

@x
(0; �)� @v(b)

@x
(0; �)

�

as functions in L
2(0; T ). Since

@u(P )

@x
(0; t) =

@u(Q)

@x
(0; t), 0 < t < T , means that

@u(a)

@x
(0; t) =

@u(b)

@x
(0; t), 0 < t < T , we apply Lemma 2 to obtain

@v(a�b)

@x
(0; t) = 0,

0 < t < T , in the sense of H�1(0; T ). Therefore Lemma 1 implies a = b in H�1(0; 1).

Noting (2.1) and (2.2), the equality a = b in H
�1(0; 1) is equivalent to P = Q, the

conclusion of Theorem 1.
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x8. Proof of Theorem 2.

We set

(8.1) a =

NX
k=1

�(� � �k); b =

NX
k=1

�(� � �k):

Then by (3.1) and (3.2), we apply Lemma 2 in (7.1) to obtain@v(a� b)

@x
(0; �)


H
�1(0;T )

� C2

@u(a� b)

@x
(0; �)


L2(0;T )

:

Henceforth constants C = C(T; �) > 0 are independent of a and b. Therefore Lemma

1 implies

(8.2) ka� bkH�1(0;1) � C

@u(P )
@x

(0; �)� @u(Q)

@x
(0; �)


L2(0;T )

:

As test functions, we set

(8.3) �i(x) =

8>><
>>:

2
�i��i�1+2�

�
x� �i+�i�1

2

�
;

�i+�i�1
2

� x � �i + �

�2
�i+1��i�2�

�
x� �i+�i+1

2

�
; �i + � < x <

�i+�i+1
2

0; otherwise

for 1 � i � N . Here we recall that �0 = 0 and �N+1 = 1. By (4.3) and (4.4), for

1 � i � N , we can readily verify that �i 2 H1
0 (0; 1),

(8.4) �i(�j) = �i(�j) = 0; j 6= i;

(8.5) k�ikH1
0 (0;1)

=
p
2

�
1

�i � �i�1 + 2�
+

1

�i+1 � �i � 2�

� 1
2

and

(8.6) �
0
i(x) =

2

�i � �i�1 + 2�
; �i � � < x < �i + �:

By the de�nition of k � kH�1(0;1), we have���H�1 < a� b; � >H1
0

��� � ka� bkH�1(0;1)k�kH1
0 (0;1)

for any � 2 H1
0 (0; 1), so that for � = �i by using (8.4), we obtain

j�i(�i)� �i(�i)j � k�ikH1
0 (0;1)

ka� bkH�1(0;1);
namely,

j�i � �ij

��i � �i�1 + 2�

2

p
2

�
1

�i � �i�1 + 2�
+

1

�i+1 � �i � 2�

� 1
2

ka� bkH�1(0;1)

�C
�
1 +

1

(�; �j)

� 1
2

ka� bkH�1(0;1)

by (8.5), (8,6) and (4.5). Thus (8.2) completes the proof of Theorem 2.
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x9. Proof of Theorem 3.

By (2.4), recalling (5.4) and (5.8), we have

u(P )(x; t) =

1X
j=1

2

j2�2
(�1 sin j��1 + �2 sin j��2) sin j�x

�(�(t)� (�(0) + L)ej(t)); 0 < x < �1; 0 < t < 1;(9.1)

with P = f�1; �2; �1; �2g. On the other hand,

1X
j=1

2 sin j�� sin j�x

j2�2
= x(1� �); 0 < x < �

(e.g., Prudnikov, Brychkov and Marichev [p.743, 9]), so that

� u(P )(x; t) + �(t)x(�1(1� �1) + �2(1� �2))

=

1X
j=1

2

j2�2
(�1 sin j��1 + �2 sin j��2)(�(0) + L)ej(t) sin j�x;

0 < x < �1; 0 < t < 1:

Therefore we obtain

� @u(P )

@x
(x; t) + �(t)(�1(1� �1) + �2(1� �2))

=
@

@x

0
@ 1X

j=1

2

j2�2
(�1 sin j��1 + �2 sin j��2)(�(0) + L)ej(t) sin j�x

1
A ;

0 < x < �1; 0 < t < 1:(9.2)

Now we will prove that we can exchange @
@x

and
P1

j=1 at the right hand side. Since

f1;
p
2ejgj�1 forms an orthonormal basis in L

2(0; 1) and (�(0) + L) : L2(0; 1) �!
L
2(0; 1) is surjetive and an isomorphism, we see that

C
�1

0
@ 1X

j=1

a
2
j

1
A

1
2

�

1X
j=1

aj(�(0) + L)ej


L2
t (0;1)

� C

0
@ 1X

j=1

a
2
j

1
A

1
2

for aj 2 R, j � 1 (e.g., Gohberg and Kre��n [4]). Here k � kL2
t (0;1)

means that we take

the L2(0; 1)-norm of functions in t. For simplicity, we set

aj(x) =
2

j�
(�1 sin j��1 + �2 sin j��2) cos j�x; j � 1:
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For any p 2 N , we have

@

@x

0
@ pX

j=1

2

j2�2
(�1 sin j��1 + �2 sin j��2) sin j�x(�(0) + L)ej(t)

1
A ;

=

pX
j=1

aj(x)(�(0) + L)ej(t)

and for any x 2 (0; 1),


pX

j=1

aj(x)(�(0) + L)ej


2

L2
t (0;1)

� C

pX
j=1

jaj(x)j2 � 4(j�1j+ j�2j)2C
�2

1X
j=1

1

j2
:

Therefore we obtain

sup
p�1

max
0�x�1


pX

j=1

aj(x)(�(0) + L)ej


L2
t (0;1)

<1;

which implies that

1X
j=1

@

@x

�
2

j2�2
(�1 sin j��1 + �2 sin j��2)(�(0) + L)ej(t) sin j�x

�

is convergent in C0([0; �1]; L
2
t (0; 1)). Consequently we can exchange @

@x
and

P1

j=1 in

(9.2) to obtain

� @u(P )

@x
(x; t) + �(t)(�1(1� �1) + �2(1� �2))

=

1X
j=1

2

j�
(�1 sin j��1 + �2 sin j��2) cos j�x(�(0) + L)ej(t)

in C0([0; �1]; L
2
t (0; 1)), so that we can substitute x = 0:

� h(t) + �(t)(�1(1� �1) + �2(1� �2))

=

1X
j=1

2

j�
(�1 sin j��1 + �2 sin j��2)(�(0) + L)ej(t)(9.3)

where the series is convergent in L2t (0; 1). On the other hand, we note

((�(0) + L)ej; (�(0) + L
�)�1ek)L2

t (0;1)
=

�
0; k 6= j; k; j � 1
1
2
; k = j
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and

((�(0) + L)ej ; (�(0) + L
�)�11)L2

t (0;1)
= 0; j � 1

by (ej ; ek)L2
t (0;1)

=

� 1
2
; k = j

0; k 6= j
and (ej ; 1)L2

t(0;1)
= 0.

Therefore in (9.3) taking L2t (0; 1)-scalar products with  j = (�(0) + L
�)�1ej , we

obtain

(9.4) �(h;  0)L2
t (0;1)

+ (�1(1� �1) + �2(1� �2))(�;  0)L2
t (0;1)

= 0

and

� (h;  k)L2
t (0;1)

+ (�1(1� �1) + �2(1� �2))(�;  k)L2
t (0;1)

=
1

k�
(�1 sin k��1 + �2 sin k��2); k � 1:(9.5)

By (5.5') and (9.4), we have

�1(1� �1) + �2(1� �2) =
(h;  0)L2

t (0;1)

(�;  0)L2
t (0;1)

;

with which we combine (9.5) and we obtain (5.10) for k � 1.

Finally let us assume (5.11). Then from (5.10) with k = 1; 3 we can derive

(9.6) sin ��1 + sin ��2 = �

(
(h;  0)L2

t (0;1)

(�;  0)L2
t (0;1)

(�;  1)L2
t (0;1)

� (h;  1)L2
t (0;1)

)

and

(9.7) sin 3��1 + sin 3��2 = 3�

(
(h;  0)L2

t (0;1)

(�;  0)L2
t (0;1)

(�;  3)L2
t (0;1)

� (h;  3)L2
t (0;1)

)
:

Recalling (5.5') and (5.12), we see from (9.6) and (9.7) that a = sin ��1 + sin ��2 and

b = sin 3��1 + sin 3��2. By sin 3� = 3 sin �� 4 sin3 �, we have

a = sin ��1 + sin ��2; sin ��1 sin ��2 =
b+ 4a3 � 3a

12a
;

and so the roots �1, �2 of (5.13) are equal to sin ��1 and sin ��2, respectively. Thus by

0 < �1 < �2 � 1
2
, the equalities (5.14) follow and the proof of Theorem 3 is complete.
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