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Abstract

We address the problem of heteroclinic connections in the attractor of

dissipative scalar semilinear parabolic equations

ut = uxx + f(x; u; ux); 0 < x < 1

on a bounded interval with Neumann conditions. Introducing a sequence of

order relations, we prove a new and simple criterion for the existence of hetero-

clinic connections, using only information about nodal properties of solutions

to the stationary ODE problem. This result allows also for a complete clas-

si�cation of possible attractors in terms of the permutation of the equilibria,

given by their order at the two boundaries of the interval.

1 Introduction

In this paper we investigate the long-time behaviour of scalar semilinear parabolic

di�erential equations

ut = uxx + f(x; u; ux); 0 < x < 1; f 2 C
2 (1)

on a bounded interval with Neumann conditions

ux(0; t) = ux(1; t) = 0:

In the Hilbert space X of x-pro�les in H2([0; 1]), satisfying the boundary conditions,

this equation generates a local C1-semi�ow (see [17]).

St : u0 7! u(t) = u(t; : ) 2 X:

Note that the pro�les contained in our phase space are due to Sobolev embedding

in C
1[0; 1]. Under additional conditions on f , as e.g.

f(x; u; 0) � u < 0

for large juj, and

@xf(x; u; v) + @uf(x; u; v) � v � 0

for large jvj, the semi�ow is global and dissipative, i.e. there is a global attractor Af

which is compact, connected, invariant, and attracts all bounded sets. It consists of

all orbits, being de�ned and uniformly bounded for all positive and negative times
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[16], [8]. Due to the gradient structure [30], it can be shown that Af contains only

the set of equilibria Ef and heteroclinic connections between them [16]:

Af = Ef [
[

v;w2Ef

C(v; w)

Here, C(v; w) denotes the set of heteroclinic connections from v to w, i.e. orbits

u(t);�1 < t < 1 with u(t) ! v for t ! �1 and u(t) ! w for t ! 1. If there

exists such a connection, we write v & w.

A more detailed description of the attractor starts with looking at the stationary

problem, i.e. the ODE boundary value problem:

u
00 + f(x; u; u0) = 0; u

0(0) = u
0(1) = 0: (2)

There has been a lot of investigation about these equilibria solutions, their stability

with respect to the semi�ow and heteroclinic connections between them (see [16]

and references therein). Especially the case of small di�usion has been studied [3].

The case of a cubic nonlinearity has been studied by Chafee and Infante in [9], using

bifurcation theory. For this case, a complete description of the equilibria, their

Morse-indices, bifurcations and heteroclinic connections can be found in [18].

An important tool to investigate the dynamics on the attractor in a more general

situation is the principle of non-increase for the zero-number in the linearized equa-

tion. A �rst version of this result can be found already in the work of Sturm [27];

later it has been extended and re�ned by Matano [22] and Angenent [1]. It was

used to show transversal intersection of stable and unstable manifolds by Henry [18]

and Angenent [2]. Brunovsky and Fiedler gave in [6] and [7] for general dissipative

f � f(u) and Dirichlet conditions an exact criterion for heteroclinic connections

in terms of the zero-numbers of the equilibria. This result shows that the nodal

properties of the equilibria are su�cient to determine their PDE connecting orbits.

In [15], Fusco and Rocha pointed out the importance of the permutation �f of the

equilibria, given by their order at x = 0 and x = 1. This permutation contains all

information about the nodal properties of the equilibria and allows to treat it in a

very systematic and concise way (see Section 3). However, Fusco and Rocha were

able to use it for a description of the attractor only for a quite restricted class of

such permutations.

In [10], �nally, Fiedler and Rocha gave an exact criterion, based on the permuta-

tion �f , for connections in the general case f � f(x; u; ux) which was obtained by

Conley-index technique. However, the conditions for a connection derived with this

technique are quite involved, and the relation between the permutations and the

attractors remains somewhat unclear.

In this paper we introduce a sequence of order relations for the equilibria which

has an evident geometrical interpretation, as well for the attractor as for the per-

mutation. In terms of this order relations, we can formulate a simple condition for

the existence of heteroclinic connections, similar but even simpler than the condi-

tion, given in [7] for the restricted case f � f(u). At the same time, we can show
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which information about the geometry of the attractor Af is necessary to recover

the corresponding permutation �f . This allows, using a result in [12], for a complete

classi�cation of all possible attractors and the corresponding permutations. The

proof is based mainly on bifurcation arguments as used in [15] and a technical result

from [28].

The article is organized as follows: In the following section, we introduce our concept

of order relations and state the main result. In Section 3, we recall some details about

the permutation of the equilibria and how it is related to their nodal properties

and invariant manifolds. Moreover, the relation between this permutation and the

sequence of order relations will be explained. Section 4 contains the proof of the

main result about heteroclinic connections. We conclude with an example and a

discussion of possible concepts for the classi�cation of attractors for this type of

equation in Section 5.

2 De�nitions and statements of main results

De�nition 2.1 For u(x) 2 C
1[0; 1], we denote by z(u) the number of strict sign

changes (zero-number) of u(x) in the interval [0; 1].

Let be H a subset of a phase space X, containing functions from C
1[0; 1] which

satisfy Neumann boundary conditions. A pair u1; u2 2 H with z(u1 � u2) = k and

all zeroes of u1(x)� u2(x) being simple is called k-ordered, and we write

u1 �k u2;

if we have

u1(0) < u2(0)

Note that such an order relation is de�ned for a dense subset of X�X. The relation

�0 is the well known partial order, related to the comparison principle. However, for

k > 0 the relation �k fails to be a partial order in the usual sense. From u1 �k u2

and u2 �k u3, we cannot conclude by transitivity that u1 �k u3 (see Figure 1).

Instead u1 and u3 may be either not comparable for any k or

u1 �k0 u3:

for some k0 congruent k modulo 2. But since the total order, given by the values at

x = 0 is still respected, closed loops like

u1 �k u2 �k u3 �k u1

are still impossible.

Choosing for H the whole phase space X, the above de�ned sequence of order

relations (X; f�kgk�0) allows to reformulate the principle of non-increase of the

zero-number as a monotonicity principle:
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Figure 1: Example with u1 �2 u2 �2 u3, but u1 �0 u3

Proposition 2.2 The semi-�ow St of equation (1) respects the sequence of order-

relations (X; f�kgk�0) in the following sense:

� If u1 6= u2 are in X, then for all positive times except a �nite and possibly

empty set, St(u1) and St(u2) are k-ordered for some k.

� If u1 �k u2, then we have for almost all t � 0 either

St(u1) �k St(u2)

or St(u1) and St(u2) are k
0-ordered for some k0 < k

Proof: Recall that according to [22] and [2] for the di�erence u1(t)� u2(t) of any

two solutions u1 6= u2 to (1) the following holds true: z(u1(t) � u2(t)) is �nite for

any positive t, non increasing in t, and drops strictly at a discrete set of values of t,

where the di�erence of the two pro�les evolves a multiple zero

u1(x; t) = u2(x; t) = @xu1(x; t) = @xu2(x; t) = 0

for some x 2 [0; 1].

Assume at a time t0 the two trajectories St(u1) and St(u2) stop to be k-ordered.

Then either the zero-number changes, but it can only drop, or the order at x = 0

changes. But due to Neumann boundary conditions, this also leads to a double zero

at x = 0, and hence to a dropping of k. 2

De�nition 2.3 Let be the set H as in De�nition 2.1 and �nite, and the pair u1; u2 2

H k-ordered with u1 �k u2. We call the pair u1; u2 k-adjacent, and write

u1 ��k u2;
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if there is no third element u3 2 H with

u1 �k u3 �k u2:

A sequence { vj1 ; vj2; : : : ; vjrg � H, r � 2,is called a k-order-chain, if

vj1 ��k vj2 ��k : : :

If it is not a proper subset of any other k-order-chain, we call it a maximal k-order-

chain.

Note that each k-order-chain, �nally, carries a total order in the usual sense; however,

two not-adjacent members of a k-order-chain need not to be k-ordered. For each

k � 0 the union of all k-order-chains carries a partial order, induced by the total

order on each order-chain which are consistent as we mentioned before.

These de�nitions can be related to the problem of heteroclinic connections in (1) as

follows: ForH, we choose the set Ef of all equilibria solutions to (1). Due to Sobolev

embedding, all the x-pro�les are in C
1[0; 1]. If we assume in addition hyperbolicity

of all equilibria, then Ef is �nite. Moreover, any pair of equilibria e1; e2 2 Ef is

k-ordered for some k. Now, the following theorem can be formulated:

Theorem 2.4 Two hyperbolic equilibria solutions v; w 2 Ef with z(v�w) = k have

a heteroclinic connection if and only if they are k-adjacent.

This condition can be checked easily from a plot of the equilibria. Checking for a

heteroclinic connection between two equilibria v; w 2 Ef , one even needs only to

look at those equilibria which are in between v and w at both x = 0 and x = 1.

To decide, however, which of both is the source and which is the target, one needs

additional information: In Lemma 4.5 we will show that any maximal order-chain

consists of alternating sources and targets, beginning and ending both with a target

equilibrium. An other possibility to resolve this question is to use a result of Fiedler

and Rocha which will be discussed in Section 3. It is possible to compute the

Morse-indices from the nodal properties of all equilibria (i.e. the permutation of

the equilibria). The Morse-Smale property yields that the equilibrium with higher

index has to be the source.

3 Nodal properties, meandric permutations

and invariant manifolds

In this section we recall brie�y how the nodal properties of the equilibria are encoded

by a permutation, given by the order of the equilibria at both ends of the interval

[0; 1]. Moreover, we explain the relation between this permutation and the sequence

of order relations (Ef ; f�kgk�0), given in the previous section. Finally, we recall
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Figure 2: surface S(x; �)

some fundamental results about the structure of the attractors. They show, how

the nodal properties of Sturm-Liouville eigenfunctions, together with the principle

about the zero-number dropping, can be used to determine the nodal properties in

the invariant manifolds, building up the attractor.

With Ef = fv1; : : : ; vng we denote the set of all equilibria for (1), i.e. all solutions

to equation (2), which will be assumed to be all hyperbolic. Due to dissipativity,

this will be a �nite set. Taking their order at x = 0

v1(0) < v2(0) < : : : < vN�1(0) < vN(0);

we can de�ne the permutation � according to the values at x = 1:

v�(1)(1) < v�(2)(1) < : : : < v�(N�1)(1) < v�(N)(1):

An important feature of this permutation can be seen as follows: Consider all tra-

jectories u(x); x 2 [0; 1] of the spatial dynamics (2) which satisfy the �rst boundary

condition ux(0) = 0. This is a one-parametric family of curves, parametrized by

u(0) = � and forms a smooth surface S(x; �) in the extended phase space (u; ux; x)

(see Figure 3). The intersection points of the curve S(1; �) := 
(�) with the straight

line fx = 1; ux = 0g lie on trajectories satisfying also the boundary condition at

x = 1. The order of these solutions along the curve 
(�) is the same as along the

line fx = 0; ux = 0g. Thus, the permutation �f of the equilibria is determined only

by 
(�). This curve has no self-intersections and hence the permutation �f is a so

called planar or meandric permutation. Such permutations were �rst described by

V.I. Arnol'd in [4]. They give rise to a lot of interesting questions and have been

studied also from a pure combinatorial point of view (see [20],[21],[26]).

One can easily prove that the condition for the equilibria to be hyperbolic makes

the corresponding intersection point of the curve 
(�) transversal. Moreover, the
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dissipativity condition on f leads to 
(�)! �1 for �! �1. Hence, there has to

be an odd number of hyperbolic equilibria. Obviously the permutation determines

the curve up to a di�eomorphism of the phase plane.

The importance of these permutations for a description of the attractors of equation

(1) has been discovered by G. Fusco and C. Rocha in [15]. Later they have been

used in several papers on this subject ([10], [11], [12], [13], [24], [28]). In [10] it

has been shown, how from these meandric curves we can read o� two important

combinatorial invariants of the set Ef :

� Counting the number of clockwise half-turns, performed by a tangent vector

to the curve 
(�) along a path from outside the region of intersections to an

intersection point vj, we obtain the winding numbers i(vj); j = 1; : : : ; n. The

winding number i(vj) has been shown to be equal to the Morse-index (i.e.

dimension of the unstable manifold) of the equilibrium vj.

� The number of clockwise half-turns, performed by a line, connecting an inter-

section point vj with a point, moving along the meandric curve from outside

the region of intersections to an intersection point vk, is equal to the num-

ber of zeros z(vj � vk) of the di�erence of the corresponding x-pro�les of the

equilibria.

Moreover it has been shown in [12] that indeed all meandric permutations with non-

negative winding numbers can be realized as the con�guration of all the solutions

to (2) by an appropriate choice of f(x; u; ux) .

We will show now that there is a simple relation between the permutation �f of the

equilibria and the sequence of order-relations (Ef ; f�kgk�0).

Lemma 3.1 Let be Ef the set of all equilibria, and �f the corresponding permuta-

tion. Then the whole sequence of order-relations (Ef ; f�kgk�0) can be obtained from

�f .

Proof: Recall that for any pair of equilibria v; w 2 Ef , the zero number z(v � w)

can be obtained from the meandric permutation �f as the number of positive clock-

wise half-turns around v, performed by the meandric curve along the curve segment

between the �rst equilibrium v1 and w. Together with the order of the equilibria

at x = 0 which is obviously given by the permutation this allows to calculate the

whole sequence of order relations (Ef ; f�kgk�0). 2

Note that there are of course lots of abstract sequences of order relations which

cannot be realized by a set of functions H � C
1[0; 1]. Moreover, for an arbitrary

�nite set of functions H � C
1[0; 1], its sequence of order relations (H; f�kgk�0) in

general cannot be obtained from some meandric permutation � as in the previos

Lemma. However, the following Lemma shows that, if a sequence of order relations

originates from a set of all equilibria Ef , i.e. there exists a realizing meandric
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permutation �f , then this permutation can of course be easily recovered from these

order relations. Moreover, we show that such realizable sequences of order relations

are already determined by the adjacency relations. This is of course not true for

general abstract sequences of order relations.

Lemma 3.2 (1) Let be Ef the set of all equilibria and (Ef ; f�kgk�0) the corre-

sponding sequence of order relations. Then the permutation �f can be calcu-

lated from these order relations.

(2) If for two di�erent nonlinearities f1, f2 there is a bijection � : E1 7�! E2,

such that

v ��k w() �(v) ��k �(w);

then the corresponding meandric permutations �1; �2 are equal.

Proof: Any pair of equilibria v; w 2 Ef is k-ordered for some k, and from this order

we can recover their order at x = 0 and, taking into account whether k is even or

odd, also the order at x = 1 (for even k the order has to be the same as at x = 0,

for odd k the inverse). This is clearly su�cient for recovering the permutation and

proves part (1).

In order to prove part (2), we make the following assertion: Any sequence of order-

relations (E; f�kgk�0), originating from a meandric permutation has the property

that for any pair of equilibria v; w 2 E there is at least one order-chain, containing

both v and w. Using this assertion, the Lemma follows immediately: Again, for any

pair of equilibria from their order in the order-chain, we can recover their order at

x = 0 and x = 0. Due to the bijection, these orders have to be the same for �(v)

and �(w). Hence �1 = �2.

Now, we prove the assertion. Suppose the pair of equilibria v; w has zero-number

z(v �w) = k and v �k w. If they are in addition k-adjacent, they obviously form a

k-order-chain. Otherwise, by de�nition, there is a third equilibrium ~v with

v �k ~v �k w:

By induction, we can conclude that there are k-order-chains from v to ~v, as well as

from ~v to w. Together, they form a k-order-chain from v to w. 2

The last Lemma allows also conclusions about the recovering of the permutation

from some information about the heteroclinic connections in a given attractor. Due

to Theorem 2.4 the adjacencies of equilibria correspond exactly to the heteroclinic

connections in the attractor. Hence Lemma 3.2 can be interpreted as follows: If

for a given attractor we know for all pairs of connected equilibria v & w their

order at x = 0, and the zero-number z(v � w), then we can uniquely determine

the corresponding permutation �f . The question how this result can be used for

a classi�cation of attractors and corresponding permutations will be discussed in

detail in Section 5.

8



In the following propositions we recall some fundamental results which will be used

later. They describe the invariant manifolds, their transversal intersections, and the

nodal properties of the solutions contained therein:

Proposition 3.3 Let v be a hyperbolic equilibrium with Morse-index i(v) = n. Then

we have the (strong-)unstable manifolds

W
u
1 (v) � W

u
2 (v) � : : : � W

u
n (v) = W

u(v); (3)

where each W u
j (v) has the dimension j. The span h�0; : : : ; �j�1i of the �rst j eigen-

functions is in v tangent to W
u
j (v) and parametrizing it globally. An eigenfunction

�k has exactly k zeros. For u1 6= u2 in the closure W u
j (v), we have

z(u1 � u2) < j

Analogously we have the in�nite dimensional (strong-)stable manifolds

: : : � W
s
n+2(v) � W

s
n+1(v) � W

s
n(v) = W

s(v): (4)

Here, eachW s
k (v) has codimension k. The tangent space at v is the span h�k; �k+1; : : :i

of all but the �rst k eigenfunctions. For u1 6= u2 2 W
s
k (v), we have

z(u1 � u2) � k:

All intersections of (strong-)stable and (strong-)unstable manifolds are transversal.

Hence,

W
u
j (v) \> W

s
k (w) =: Cj;k(v; w)

is a embedded submanifold and, if it is not empty, of dimension j � k.

The existence of the manifolds follows from standard theorems [17] and classical

Sturm-Liouville theory. The condition on the zero-numbers was obtained in [5], using

[22] and [18]. For results on global parametrization see [19] and [24]. Transversality

was proved in [18] and for strong stable and unstable manifolds in [15].

We will use also the following result from [28], showing how for a connection v & w

the zero number z(v � w) determines in which strong-unstable manifolds of v and

strong-stable manifolds of w the heteroclinic orbits are contained:

Proposition 3.4 Let v; w be two equilibrium solutions of (1) with a heteroclinic

connection v & w. Then the (j � k)-dimensional manifold Cj;k(v; w) is nonempty,

if and only if

z(v � w) < j � i(v)

i(w) � k � z(v � w):
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4 Proof of the main theorem

To prove Theorem 2.4, we proceed as follows: In Proposition 4.1 we recall that

the necessity of adjacency for heteroclinic connections is an immediate consequence

of the zero-number dropping principle (see also [7]). Then, we show a technical

lemma about combinatorial properties of meandric curves, leading to a distinction

of several cases. Finally, we proof the theorem, mainly by investigating pitchfork

and saddle-node bifurcations in the attractor.

Proposition 4.1 If two hyperbolic equilibria v; w 2 Ef with v �k w have a hetero-

clinic connection, then they are adjacent.

Proof: Assume there is a heteroclinic orbit u(t); �1 < t <1, connecting from v

to w, and v �k w are not adjacent. Then by de�nition there is a ~v with

v �k ~v �k w:

For large negative t, u(t) is close to v and we have u(t) �k ~v: By Proposition 2.2 we

have for T > t either u(T ) �k ~v or u(T ) and ~v are k0-ordered for some k0 < k. This

clearly contradicts to ~v �k u(T ) which is true for large T , when u(T ) becomes close

to w. 2

De�nition 4.2 A pair of intersection points (nodes) in a meandric curve is called

a short arc, if the nodes are subsequent both along the curve and the straight line.

Lemma 4.3 Let be � a meandric curve, v; w 2 E�, and v 6= w. Then one of the

following assertions is true

(1) There is a short arc vj; vj+1 with

fv; wg \ fvj; vj+1g = ;

(2) At least one of the two nodes, say v, is contained simultaneously in two short

arcs.

(3) � is a spiral and v; w are the predecessor and successor of the central node

vc(see Figure 3).

Proof: First, note that any meander � has at least one short arc in the upper and

one in the lower half-plane. If these are the only short arcs, then � is obviously a

spiral. If v or w is the center of the spiral, we are in case (2); otherwise if v or w

is not contained in one of the two short arcs, one of these has to be disjoint from

fv; wg and we are in case (1). The only remaining possibility for the spiral is now

as described in (3).
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Figure 3: The spiral has only two short arcs

Now, we consider the case with three or more short arcs. If each of v and w meets

only one short arc, then at least one of those is disjoint from fv; wg and we are in

case (1). Finally, if one of the nodes is contained simultaneously in two short arcs,

we are in case (2). 2

Proof of Theorem 2.4: Let be � a meandric permutation of 2N+1 equilibria which

is a minimal counterexample for the theorem. This means there are equilibria v; w 2

E� which are adjacent but not connected (That a connection implies adjacency has

been shown in Proposition 4.1). At the same time, for all meandric permutations �̂

of 2N � 1 equilibria the theorem is assumed to hold true. If N = 1, this is trivially

satis�ed.

We now want to perform the proof by induction, following the distinction of cases

given in Lemma 4.3. Indeed, for case (1) we can reduce the number of equilibria by

two, removing the short arc fvj; vj+1g by a saddle-node bifurcation (see Figure 4).

The existence of a corresponding family of nonlinearities f�(u; ux; x) is an immediate

~v vj+1

� > 0
� = 0
� < 0

vj

Figure 4: Removing a short arc by a saddle-node bifurcation

consequence of the realization result in [12]. For case (2), the induction step can

be performed by a pitchfork bifurcation. This scenario has already been studied by

Fusco and Rocha (see [15]) and we can refer to their results. In case (3), �nally, the
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contradiction is obvious, since

z(v � vc) = z(w � vc) = z(v � w) =: h;

which implies that v and w are not adjacent, because we have

v �h w and v ��h vc ��h w:

Before we study these bifurcations in detail, we point out that a local bifurcation

can in�uence an existing connection v & w only in cases, where at the bifurcation

v; w, or some intermediate equilibrium ~w with v & ~w & w is non-hyperbolic. This

argument has been shown by Henry in ([18], Proof of Thm. 9) and was used also

by Fusco and Rocha in [15].

Now, let us assume that the permutation � contains two subsequent short arcs

vj�1; vj and vj; vj+1. Hence it can be obtained from the permutation �̂ with the 2N�1

nodes E�̂ = fv1; : : : ; vj�1; vj+2; : : : ; v2N+1g by a pitchfork bifurcation at vj�1 2 E�̂,

replacing the single node vj�1 by three nodes, connected with two subsequent short

arcs. We assume moreover that for the bifurcation parameter � = 0 the eigenvalue

�k, corresponding to an eigenfunction with k zeroes, becomes critical and for � > 0

the two new equilibria are generated. The result in [15] shows that all the connections

which are for � < 0 contained in the non-critical directions of vj�1

H(vj�1) := W
s
k+1(vj�1) [W

u
k (vj�1)

persist for � > 0 in the corresponding manifolds of each of vj�1; vj and vj+1. Recall

that the subscripts at the manifolds denote codimension and dimension, respectively.

The zero-numbers in the manifolds are given in Proposition 3.3.

Note that for � su�ciently close to zero all zero numbers to the remaining equilibria

persist:

z�̂(vj�1 � vr) = z�(vb � vr) (5)

where b 2 fj � 1; j; j + 1g and r 2 f1; : : : ; j � 2; j + 2; : : : ; 2N + 1g. In addition, we

have

z(vj�1 � vj) = z(vj � vj+1) = z(vj�1 � vj+1): (6)

To cover case (2) of Lemma 4.3, we take v = vj and check whether there can exist

some w 2 E� such that vj and w are adjacent for � > 0, but not connected. If

z�(vj � w) 6= k then the adjacency of vj and w for � implies adjacency of vj�1 and

w for �̂. By induction this implies a connection of vj�1 with w for � < 0. Due to

the zero-number and Proposition 3.4, such a connection is contained in H(vj�1) and

hence for � > 0 it will be inherited by vj, as explained above.

In the case z�(vj � w) = k, we have from (5) and (6) immediately either non-

adjacency

w �k vj�1 �k vj or vj �k vj+1 �k w;

or w 2 fvj�1; vj+1g. In the last case, the existence of a connection follows from

elementary bifurcation theory (for details, see again [15]).

12



To �nish the proof, we have to treat case (1) of Lemma 4.3. So, assume again

by changing the parameter � we pass from the permutation �̂ with the 2N � 1

nodes E�̂ = fv1; : : : ; vj�1; vj+2; : : : ; v2N+1g for (� < 0) to the permutation � with

E� = fv1; : : : ; v2N+1g, inserting the two equilibria vj; vj+1 now by a saddle-node

bifurcation. At � = 0, we have a single non-hyperbolic equilibrium ~v . Again �k is

the critical eigenvalue of ~v, corresponding to an eigenfunction with k zeroes. Recall

that fv; wg is assumed to be disjoint from fvj; vj+1g. Obviously, zero-numbers of

pairs of equilibria in E�̂ do not change during the bifurcation. From this we conclude

that adjacency of v and w for � implies their adjacency also for �̂ and hence by

induction a connection, say v & w, exists for � < 0. As we pointed out above, this

connection either persists during the bifurcation and we are �nished, or we have at

� = 0

v & ~v & w;

since ~v is the only non-hyperbolic equilibrium. With the same transversality argu-

ments as in the pitchfork case (see [15]), it can be shown that connections in the

non-critical manifolds

H(~v) := W
s
k+1(~v) [W

u
k (~v)

are inherited by the corresponding manifolds of both vj and vj+1. For a generic

saddle-node, the one dimensional local centre-manifold W
c
loc(~v) (cf. [17],[18]) con-

sists of two branches, one stable and one unstable. Since the manifold can be

parametrized by the corresponding eigenvector, it is obvious that one branch con-

tains functions u 2 X with u �k ~v, whereas in the other we have ~v �k u. The

connections in each branch are inherited only by one of the hyperbolic equilibria vj
and vj+1. The transversal intersection of stable and unstable manifolds at connec-

tions with non-hyperbolic equilibria has been shown in [18], Theorem 8.

Note that again for su�ciently small �, we have

z(~v � vr) = z(vj � vr) = z(vj+1 � vr)

for all r 2 f1; : : : ; j � 1; j + 2; : : : ; 2N + 1g, and of course z(vj � vj+1) = k.

Now, we have to distinguish several cases: If z(v�~v) = z(w�~v) = k, then adjacency

of v and w breaks down in the following way: Let be uv(t) an orbit connecting from

v to ~v and uw(t) from ~v to w. For large t, uv(t) and uw(�t) are contained in di�erent

branches of W c
loc(~v), i.e. say

uv(t) �k ~v �k uw(�t)

(or the reversed order, of course). Applying Proposition 2.2 yields

v �k ~v �k w:

From

z(v � w) � z(v � ~v) = k = z(~v � w) � z(v � w);

we obtain z(v�w) = k and hence ~v destroys k-adjacency for � = 0. This is preserved

for � > 0, replacing ~v by vj or vj+1.

13



The second case is z(v � ~v) 6= k. This implies also

z(v � vj) 6= k 6= z(v � vj+1): (7)

Any connection which starts or ends at ~v is inherited for � > 0 at least by one

of the equilibria vj and vj+1. From the zero-numbers (7) and Proposition 3.4 we

conclude that the connection v & ~v is contained in the non-critical manifolds and

hence persists for both vj and vj+1. This allows to establish a connection v & w by

a cascade v & v� & w, even though for z(w � ~v) = k, w may be connected with

only one equilibrium v� 2 fvj; vj+1g. The case z(w � ~v) 6= k and z(v � ~v) = k can

be treated analogically. 2

Remark 4.4 This theorem covers and substantially simpli�es the results of Fiedler

and Rocha in [10], obtained by Conley-index techniques. However the only tool which

was used above to establish the existence of heteroclinic connections is their genera-

tion at pitchfork bifurcations (cf. [15]) and a transitivity argument for connections

in Morse-Smale �ows (see e.g. [18], p. 191). Also the proof of Proposition 3.4 (cf.

[28]), which we used here, does not rely essentially on the results in [10].

We want to demonstrate now the application of this theorem with an example:

Consider the con�guration of equilibria, given in Figure 5, together with the cor-

x0

v1

v9

v10

v11

u

1

v8

v2

v3

v4

v5

v6

v7

23 111 104 5 6 7 89

Figure 5: Permutation �f = (2 4 10 8)(3 5 9 7)

responding meandric permutation �f = (2 4 10 8)(3 5 9 7). It is now easy to �gure

out the adjacencies. We have drawn in Figure 6 for each k which appears as the

zero-number for some pair of equilibria the union of all k-order-chains. Each ar-

row indicates one adjacency relation. From this, one gets immediately a picture

of the attractor (Figure 7). Note that we could have been started as well with a

14
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Figure 6: Order-Chains for the order relations ��0 and ��1
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Figure 7: Flow on the corresponding attractor

su�ciently detailed sketch of the attractor, then extract the order-chains, and �-

nally check whether the derived permutation is meandric and hence realizing the

suggested attractor.

In Figure 7 we make use of a further result from [28]: If there is a heteroclinic

connection v & w and z(v � w) = h, then the intersection

Ch+1;h(v; w) = W
u
h+1(v) \> W

s
h(w)

contains exactly one heteroclinic orbit. Due to Proposition 2.2 and 3.3, exactly on

these orbits in the attractor the semi-group acts monotonically with respect to the

corresponding order relation �h. We have drawn here for each set of connecting

orbits C(v; w) only this single heteroclinic orbit. This leads according to Theorem

2.4 to a one to one correspondence between the arrows in Figure 7 and the arrows
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in Figure 6, denoting adjacency. Note that the arrows in Figure 7 have to point

in contrast to the arrows of Figure 6 in alternating directions. This observation is

explained by the following Lemma:

Lemma 4.5 Let � be a meandric permutation with non-negative winding numbers

and (E�; f�kgk�0) the induced sequence of order-relations. Then for a maximal

k-order-chain S = fs1; : : : ; srg � E� we have:

(1) The length r of the maximal order-chain S is odd

(2) For every j 2 f1; : : : ; rg we have i(sj) > k, if j is even, and i(sj) � k, if j

odd.

(3) s1 . s2 & s3 . : : :& sr

Proof: Everything follows immediately from the assertion that i(s0); i(sr) � k:

Indeed, starting from s0, we get step by step from Theorem 2.4 and Proposition 3.4

the conditions (2) on the indices and the connections s1 . s2 & s3 . : : :. Ending

with i(sr) � k, forces the length r to be odd.

The assertion i(s0) � k can be veri�ed as follows: For any vj with i(vj) > k, we

consider the function

zvj (v�) := z(vj � v�)

with � ranging from 1 to j. Obviously, we have zvj (vj�1) � i(vj)�1 , and zvj (v1) = 0

(cf. Section 3). Since the function zvj changes its values for subsequent equilibria

by at most �1, it takes all values from zero to i(vj)� 1. Hence we have also

zvj (v~j) = k

for some ~j < j, i.e v~j �k vj. Consequently, vj cannot be the �rst element s0 in a

maximal k-chain. Obviously, i(sr) � k follows in the same way. 2

Note that, looking only on the attractor, it is not evident which pairs of equilibria

can be brought together in a saddle-node bifurcation. The following Lemma shows

how this is determined locally by the structure of the order-chains:

Lemma 4.6 Let (Ef ; f�kgk�0) the set of all equilibria, together with its sequence

of order relations. Then the pair fv; wg � E�, v �k w, is a short arc in �f , if and

only if
Adjk

+(v) = f~v 2 E�j v ��k ~vg = fwg

Adjk
�(w) = f ~w 2 E�j ~w ��k wg = fvg:

(8)

Proof: If fv; wg is assumed to be a short arc with v �k w, then (8) follows imme-

diately from the saddle-node bifurcation scenario (recall from the proof of Theorem

2.4).
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Now, we assume (8) to be satis�ed for fv; wg. Since (8) implies in particular v ��k w,

we get from Lemma 4.5 information about the indices i(v) and i(w). One of both, say

i(v), is greater than k, the other one smaller or equal. Since Adjk
+(v) is assumed to

contain only one element, we can conclude that i(w) = k: Indeed, from [28], Lemma

4.6, 4.8, it follows that for any u 2 Ef and l < i(u); � 2 f+;�g, the set Adjl
�(u)

contains at least one equilibrium u
�
l with i(u�l ) = l. Applying this, we obtain that

v
+
k = w, and hence i(w) = k.

Moreover, we can conclude that

zv(~v) := z(v � ~v) > k (9)

for all ~v 2 Ef with v(0) < ~v(0) < w(0): Note that the �rst ~v, violating this condition

has zv(~v) = k and hence v ��k ~v, but Adjk
+(v) = fwg. With ~w we denote now the

predecessor of w along the meandric curve. From (9) we obtain that zv( ~w) > k and

since zv( ~w) may di�er from zv(w) = k at most by �1, we get zv( ~w) = k + 1. The

change of the function zv along the subsequent nodes ~w and w implies that v has to

be between them at x = 1. Hence we get

~w(1) < v(1) < w(1); (10)

if we assume that k is even; for odd k the inequality (10) is valid in reversed order.

In any case, since z(w � ~w) may di�er from i(w) = k at most by �1 and, due to

(10) should be congruent z(v � w) modulo 2, this yields

z(w � ~w) = k:

Using (8) and the same arguments as above, we obtain ~w = v. Thus, the equilibria

v and w are subsequent along the meandric curve.

But there is a well-known duality between the meandric curve and the straight line:

Stretching the curve by a homotopy of the plane to a straight line and simultane-

ously deforming the straight line into a curve, gives the inverse permutation (see

[10]), preserving adjacency. In Section 5, we will discuss this transformation more

detailed. Applying this transformation to the arguments above, we obtain that v

and w are also subsequent along the straight line. This shows that fv; wg is indeed

a short arc. 2

5 Classi�cation of the attractors

Lemma 3.1 and 3.2 allow for a complete classi�cation of all possible attractors in

the following sense:

De�nition 5.1 Two attractors Af ;Ag are called order-equivalent, if there exists a

bijection � : Ef �! Eg of the equilibria such that for all k � 0; v; w 2 Ef we have

v ��k w () �(v) ��k �(w);
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2n + 1 1 3 5 7 9 11 13 15 17 19 21

Pn 1 1 2 7 32 175 1 083 7 342 53 372 409 982 3 293 148

23 25 27 29 31

27 446 089 235 943 180 2 082 554 573 18 804 608 658 173 194 661 758

33 35

1 623 164 580 385 15 448 388 973 479

Table 1: The numbers Pn of positive meanders with 2n+ 1 nodes

Lemma 3.2 implies that for two order-equivalent attractorsAf ;Ag the corresponding

permutations are equal:

�f = �g:

Due to a result of Fiedler and Rocha in [11] this implies even C
0-orbit equivalence

of the attractors Af and Ag.

At the other hand results in [12] and [29] show that all meandric permutations with

non-negative winding numbers, we call them positive meanders, can be realized as

the permutation of the solutions to the stationary problem (2). Moreover, if the

attractors Af ;Ag belong to di�erent equivalence classes, then Lemma 3.1 implies

that their permutations have to be di�erent. Together, this yields the following

theorem:

Theorem 5.2 There is a one to one correspondence between positive meanders and

the classes of order-equivalent attractors.

We want to discuss now this concept of order-equivalence. The �rst concept of

equivalence for attractors of equation (1) has been introduced by Fiedler and Rocha

in [10]: Two attractors were called connection-equivalent, if there is a bijection of

the equilibria, preserving Morse-indices and connections. They showed also that

connection-equivalence can be checked from the permutation, i.e. relies only on

ODE-information about the solutions to the stationary problem. But already in

[10] there were rather simple examples where connection-equivalence failed to give

a satisfactory characterisation of the �ow on the attractor. Completely di�erent

permutations turned out to have connection-equivalent attractors.

This di�culty was resolved in [28]. It has been pointed out that taking into account

the sequence of strong-stable and strong-unstable manifolds according to the Sturm-

Liouville spectra (cf. Proposition 3.3) allows for a more detailed characterisation

of the attractors. Note that this structure is not regarded by C
0-orbit equivalence.

Due to proposition 3.4 the distribution of the connecting orbits C(v; w) among these

manifolds is governed by the zero number z(v � w). This gave rise to the following

de�nition (see [28]):
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De�nition 5.3 Two attractors are called Sturm-equivalent, if there is a bijection

of the equilibria, preserving Morse-indices, connections, and zero-numbers z(v � w)

for connected equilibria v & w.

Lemma 5.4 If two attractors Af and Ag are order-equivalent, then they are also

Sturm-equivalent.

Proof: Due to Theorem 5.2, two order-equivalent attractors have the same permu-

tation of the equilibria. This permutation determines all Morse-indices and zero-

numbers (see Section 3), as well as the heteroclinic connections (see Lemma 3.1 and

Theorem 2.4). 2

The inverse statement, however, is in general not true. There exist Sturm-equivalent

attractors where the corresponding permutations are di�erent, and hence order-

equivalence fails. An easy way to obtain such examples was shown in [10]. The

transformation T1 : u 7�! �u in (1) leads simply to a symmetric image of the

attractor. It is not di�cult to �gure out that the corresponding permutation � will

be conjugated T1 : � 7�! ���
�1 where � is the involution

� =

 
1 2 : : : n� 1 n

n n� 1 : : : 2 1

!

Geometrically, this means a rotation of the meandric curve by 180 degrees. Ob-

viously, the meandric curve ���
�1 may di�er from �. Another transformation

T2 : x 7�! 1 � x in (1), re�ecting all x-pro�les, acts on the permutation by

T2 : � 7�! �
�1. The actions of these transformations on the order-chains are the

following:

v ��k w () T1(w) ��k T1(v) (11)

v ��k w()

(
T2(v) ��k T2(w) and k even

T2(w) ��k T2(v) and k odd
(12)

Beside this two transformations, re�ecting either all or only the odd order-chains,

there exist further possibilities to obtain Sturm-equivalent but di�erent permuta-

tions: For any subset K = fk1; k2; : : :g � N, we may re�ect the k-order-chains for

all k 2 K.

Example 5.5 The permutations of 13 equilibria �1 = (4 12)(5 11 9)(6 10 8) and �2 =

(2 10)(3 9 7 )(4 8 6) are Sturm-equivalent. The corresponding bijection

� =

 
1 2 3 4 5 6 7 8 9 10 11 12 13

1 12 11 2 3 4 5 6 7 8 9 10 13

!

re�ects only the 0-order-chains, whereas the 1-order-chains and the 2-order-chains

remain unchanged:

v ��k w()

(
�(v) ��k �(w) and k � 1

�(w) ��k �(v) and k = 0
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This may be generalized as follows: Due to a result in [24], the attractor can be

parametrized globally by the the �rst m eigenfunctions �0; : : : ; �m�1, where m is

the maximal unstable dimension of an equilibrium in the attractor. Note that the

above mentioned re�ection of the k-order-chains, k 2 K, can be obtained by a

transformation of the basis functions

�k 7�! ��k for all k 2 K:

For a single k, the union of all k-order-chains may in general consist of several

connected components (in the sense of the partial order). In such cases, each

component can be re�ected independently. But since the attractor is contained

in a m-dimensional inertial manifold, a corresponding transformation of the attrac-

tor can not be extended to the inertial manifold. The simplest example, show-

ing this phenomenon, are the following two permutations of 13 equilibria: �1 =

(2 4 6)(3 5)(8 10 12)(9 11) and �2 = (2 6 4)(3 5)(8 10 12)(9 11).

In the case of order-equivalence, however, the orientation of the attractor in the

span of the �rst m eigenfunctions is taken into account. This is re�ected by the

fact that in contrast to Sturm-equivalence, where for connected equilibria only the

zero-number z(v � w) is regarded, also the order of the values v(0) and w(0) enter

into the fundamental notion

v ��k w:
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