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Abstract

With a common background and motivation, the main contributions of this paper are developed
in two different directions. Firstly, we are concerned with functions which are the maximum of
a finite amount of continuously differentiable functions of n real variables, paying attention to
the case of polyhedral functions. For these max-functions, we obtain some results about outer
limits of subdifferentials, which are applied to derive an upper bound for the calmness modulus of
nonlinear systems. When confined to the convex case, in addition, a lower bound on this modulus
is also obtained. Secondly, by means of a KKT index set approach, we are also able to provide
a point-based formula for the calmness modulus of the argmin mapping of linear programming
problems without any uniqueness assumption on the optimal set. This formula still provides a
lower bound in linear semi-infinite programming. Illustrative examples are given.

1 Introduction

The present paper was initially motivated by the problem of computing the calmness modulus of linear
programs having optimal sets which are not a singleton. In relation to this problem, the immediate
antecedents are gathered in [2], [3] and [4], where the assumption of the uniqueness of nominal
optimal solution is essential. To this respect, we advance that an exact formula for the aimed modulus
is obtained in Section 4 and that it is given in terms of the calmness moduli of certain sub-level
multifunctions which are nothing else but feasible set mappings.

In the context of finite linear systems, the computation of the calmness modulus for feasible set map-
pings is dealt in [5] , where an operative expression (exclusively in terms of the nominal data) for this
modulus is provided. With respect to this subject, the present work presents some extensions to the
setting of C1-systems, where the constraints are described by continuously differentiable (sometimes
convex) functions.

According to Theorem 1 below, the key ingredient in the computation (or estimation) of the calmness
modulus for a C1-system at some feasible point is the outer limit of subdifferentials, by approaching this
point from outside the feasible set, of a certain max-function associated with the system. Besides this
original motivation and its application to calmness moduli, the problem of analyzing this outer limit is of
independent interest, and it is tackled in the present paper in two stages: firstly, in the particular case
of polyhedral functions and, in a second step, in the more general context of continuously differentiable
functions. The reader is addressed to [2, Theorem 3.1] for a direct antecedent to this problem, when
confined to the convex case (non necessarily differentiable).

The results about outer limits of subdifferentials obtained in the current work are applied to derive
an upper bound on the calmness modulus of the feasible set mapping associated with a parame-
terized C1-system, under right-hand-side (RHS) perturbations. If, additionally, functions defining the
constraints are convex, then we also derive a lower bound on the aimed calmness modulus. These
results are inspired by the known exact formula for linear systems, which is recalled in Theorem 2
for completeness purposes. In this case of finite linear systems, it is well-known that the feasible set
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mapping is always calm at any point of its (polyhedral) graph as a consequence of a classical result
by Robinson [21].

The paper also deals with the calmness of the optimal set mapping (also called argmin mapping), S,
in the framework of linear problems with canonical perturbations; i.e., where perturbations fall on the
objective function coefficient vector and on the RHS of the constraints. The same result by Robinson
ensures that mapping S is always calm at any point of its graph, since the KKT conditions allow
us to express the graph of S as a finite union of polyhedral sets. This is no longer the case in the
framework of perturbations of all data. In relation to this last framework, [3, Theorem 4.1] establishes
a characterization for the calmness of the corresponding argmin mapping (by combining two results
from the seminal paper [22]), and provides an operative upper bound for the corresponding calmness
modulus, assuming the uniqueness of optimal nominal solution.

Comprehensive studies on calmness and other variational properties for generic multifunctions can
be traced out from the monographs [7, 16, 20, 23]; see also [9, 12, 17, 15] in relation to the calmness
of constraint systems in the context of RHS perturbations; where calmness translates into the exis-
tence of a local error bound for the corresponding supremum function (see [1], [8] and [18]). Other
subdifferential approaches to calmness/local error bounds can be found in [11, 14].

The structure of the paper is as follows: Section 2 provides the necessary notation, definitions and
preliminary results. Section 3 gathers the announced results on outer limits of subdifferentials of max-
functions under different assumptions. It is divided into three subsections. The first one deals with
the particular case of a polyhedral function where an exact formula is provided, while the second
is focused on the nonlinear case. The third subsection provides the application to the estimation of
the calmness modulus for the feasible set mapping in the context of C1-systems mentioned above,
paying attention to the particular case of convex C1-systems. In Section 4, by means of a KKT index
set approach, we provide an operative expression for the calmness modulus of S at a given nominal
parameter in the case when the nominal optimal set does not necessarily reduce itself to a singleton.
Moreover, we prove that this expression still remains as a lower bound in the semi-infinite continuous
case, when the index set T is assumed to be a compact Hausdorff space and all the constraints’
coefficients are continuous functions (with respect to the index) on T. The reader is addressed to [10,
Chapter 10] for details about stability in this semi-infinite setting. Illustrative examples are provided in
order to show that, in this general case (without uniqueness of nominal optimal solution), the referred
expression may be strictly smaller than the upper bound given in [4, Theorem 7]. We finish the paper
with a section of conclusions.

2 Preliminaries

In this section we introduce some notation, definitions and preliminary results which are needed later
on. Given A ⊂ Rk, we denote by convA and coneA the convex hull and the conical convex hull of
A, respectively. It is assumed that coneA always contains the zero-vector 0k, in particular cone(∅) =
{0k}. IfA is a subset of any topological space, intA, clA and bdA stand, respectively, for the interior,
the closure, and the boundary of A. If ‖·‖ is any norm in Rk, its corresponding dual norm is denoted
by ‖·‖∗ , i.e., ‖u‖∗ = max‖x‖≤1 |u′x| .
In the next paragraphs we recall some definitions related to a generic mappingM : Y ⇒ X between
metric spaces (with distances denoted indistinctly by d).M is said to be calm at (y, x) ∈ gphM
(the graph ofM) if there exist a constant κ ≥ 0 and neighborhoods U of x and V of y such that

d (x,M (y)) ≤ κd (y, y) (1)
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whenever x ∈M (y)∩U and y ∈ V ; where, as usual, d (x,Ω) is defined as inf {d (x, z) | z ∈ Ω}
for Ω ⊂ Rn, and d (x, ∅) := +∞.

It is well-known that the calmness of M at (y, x) is equivalent to the metric subregularity of the
inverse multifunctionM−1 at (x, y) (see, for instance, [7, Theorem 3H.3 and Exercise 3H.4]), which
reads as follows: there exist a constant κ ≥ 0 and a (possibly smaller) neighborhood U of x such that

d (x,M (y)) ≤ κd
(
y,M−1 (x)

)
, for all x ∈ U. (2)

The infimum of those κ ≥ 0 for which (1) –or (2)– holds (for some associated neighborhoods) is called
the calmness modulus ofM at (y, x) and is denoted by clmM (y, x) . The case clmM (y, x) =
+∞ corresponds to the one in whichM is not calm at (y, x) .

2.1 Preliminaries on the feasible set mapping

We consider the parametrized C1- system

σ (b) := {fi (x) ≤ bi, for all i = 1, ...,m} , (3)

and the associated feasible set mapping F : Rm ⇒ Rn, given by

F (b) := {x ∈ Rn | fi (x) ≤ bi, for all i = 1, ...,m} , (4)

where fi ∈ C1 (Rn) and bi ∈ R, i = 1, ...m. In this setting, b ≡ (bi)i=1,...m is the parameter to be
perturbed. The space of variables of the system, Rn, is equipped with an arbitrary norm, while our
parameter space, Rm, is endowed with the supremum norm ‖b‖∞ := maxi=1,...,m |bi| , b ∈ Rm.
Associated with system (3), we consider the max-function

g := max
1,...,m

gi, where gi (x) = fi (x)− bi, i = 1, ...,m. (5)

Throughout the paper, we appeal to the set of active indices at x ∈ F (b) , denoted by Tb (x) and
defined as

Tb (x) := {i ∈ {1, ...,m} | gi (x) = 0} .
If Tb (x) = ∅, x is a Slater point of σ (b) , and in this case one trivially has clmF(b, x) = 0. So, along
the paper we assume that our nominal solution x ∈ F

(
b
)

satisfies Tb (x) 6= ∅, or, equivalently,

g (x) = 0.

The following theorem constitutes our starting point in the estimation of clmF(b, x). Statement (i)
in this theorem comes from [8, Prop. 1, Prop. 11, Prop. 5 (ii)], whereas (ii) follows directly from [18,
Theorem 1]. In it, we have taken into account the well-known relationship between clmF(b, x) and
the error bound modulus of g at x, specifically

clmF(b, x) = [Er g(x)]−1 , (6)

and the easily verifiable fact that

lim inf
x→x, g(x)>0

d∗ (0n, ∂g (x)) = d∗

(
0n, lim sup

x→x, g(x)>0

∂g (x)

)
, (7)

where d∗ stands for the distance in Rn associated with ‖·‖∗ and ∂g represents the Clarke subdiffer-
ential of g.
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Theorem 1 Let
(
b, x
)
∈ gphF such that g (x) = 0. Then:

(i) We have

clmF(b, x) ≤

[
d∗

(
0n, lim sup

x→x, g(x)>0

∂g (x)

)]−1

; (8)

(ii) If, additionally, functions fi in (5), i = 1, ...,m, are convex, then

clmF(b, x) =

[
d∗

(
0n, lim sup

x→x, g(x)>0

∂g (x)

)]−1

. (9)

Remark 1 In relation to the previous theorem let us comment that:

(i) With respect statement (i), [8, Prop. 1, Prop. 11, Prop. 5 (ii)] refers to the Fréchet subdifferential
∂̂. In principle, from that results in [8] we deduce

Er g(x̄) ≥ lim inf
x→x̄,g(x)>0

d∗

(
0n, ∂̂g(x)

)
.

However, in our case we may replace ∂̂ by the Clarke subdifferential, ∂, as consequence of the Clarke
regularity of g (see the beginning of Section 3), and then, taking also (6) and (7) into account, we
obtain inequality (8).

(ii) Equality (9) is held under convexity, even without differentiability assumptions on the fi’s (see
again [18, Theorem 1]), in which case, ∂g stands for the usual subdifferential of convex analysis.

Our next step is to obtain estimations for clmF(b, x) which only involve the nominal data. Having
the previous theorem in mind, as advanced in Section 1, a way of tackling this problem consists of
analyzing the outer limit inside. The next theorem, dealing with the case of linear systems, provides a
motivation for some results of the following section (Theorems 4 and 5).

The following theorem deals with the linear case, in which the fi’s are given by

fi (x) := a′ix, i = 1, ...,m,

where ai ∈ Rn, 1, ...,m, are fixed. Here, any vector y ∈ Rn is regarded as a column-vector, and
y′ denotes its transpose (hence y′x stands for the usual inner product). In order to emphasize the
difference between the linear and nonlinear contexts, the feasible set mapping in the particular case
of linear systems will be denoted by Fa; specifically,

Fa (b) := {x ∈ Rn | a′ix ≤ bi, for all i = 1, ...,m} . (10)

From now on, Db (x) denotes the family of all subsets D ⊂ Tb (x) such that system

{
a′id = 1, i ∈ D,
a′id < 1 i ∈ Tb (x) \D

}
(11)

is consistent (in the variable d ∈ Rn). In other words, D ∈ Db (x) if there exists a hyperplane
containing {ai, i ∈ D} such that

{0n} ∪ {ai, i ∈ Tb (x) \D}

lies on one of the open half-spaces determined by this hyperplane.
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Theorem 2 [5, Theorem 4]Given
(
b, x
)
∈ gphF , we have

clmFa(b, x) =

(
min

D∈Db(x)
d∗ (0n, conv {ai, i ∈ D})

)−1

.

2.2 Preliminaries on the argmin mapping

We consider the optimal set mapping S : Rn × Rm ⇒ Rn in the linear framework under canonical
perturbations, which is given by

S (c, b) := arg min{c′x | x ∈ Fa (b)}. (12)

The parameter space, Rn × Rm, is endowed with the norm

‖(c, b)‖ := max {‖c‖∗ , ‖b‖∞} , (c, b) ∈ Rn × Rm. (13)

The next theorem comes directly from [4, Theorem 7] and constitutes our starting point of Section 4.
In it, associated with a given

(
(c, b), x

)
∈ gphS , we appeal to the following family of index subsets

associated with the Karush-Kuhn-Tucker (KKT) conditions (hereafter referred to as KKT index sets):

Kc,b (x) = {D ⊂ Tb (x) : |D| ≤ n and − c ∈ cone {ai, i ∈ D}} ,

where |D| stands for the cardinality of D and condition |D| ≤ n comes from Carathéodory’s Theo-
rem. For any D ∈ Kc,b (x) we consider the mapping LD : Rm × RD ⇒ Rn given by

LD (b, d) := {x ∈ Rn | a′ix ≤ bi, i = 1, ...,m; −a′ix ≤ di, i ∈ D} . (14)

Observe that all preliminary results for the feasible set mappings Fa may be specified for LD, which
is nothing else but the feasible set mapping associated with an enlarged system.

Theorem 3 [4, Theorem 7] Let
(
c, b
)
∈ Rn × Rm. Then

clmS(
(
c, b
)
, x) = clmSc

(
b, x
)
≤ max

D∈Kc,b(x)
clmLD

((
b,−bD

)
, x
)
, (15)

where bD stands for
(
bi
)
i∈D and Sc (b) := S (c, b) for b ∈ Rm.

Remark 2 Corollary 8 in [4] shows that (15) holds as an equality under the additional assumption that
S
(
c, b
)

= {x} .

3 Outer limits of subdifferentials and calmness modulus of dif-
ferentiable convex systems

The present section is divided into three subsections. The first one, inspired by Theorem 2 (having
also Theorem 1 in mind ), establishes an exact expression for the outer limit of subdifferentials of
polyhedral functions. The second is focussed on the more general case of max-functions in a nonlinear
differentiable framework. The third applies some previous results to obtain estimations of the aimed
clmF(b, x) for convex and nonlinear systems.
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We consider the max-function g : Rn → R

g(x) := max
i=1,...,m

gi (x) ,

where the gi’s are continuously differentiable on Rn. As a consequence, g is a regular function in the
sense of Clarke (see, for instance, [23, Examples 10.24(e) and 10.25(a)]), and we have

∂g (x) = conv{∇gi (x) : i ∈ I (x)}

(see [6, 2.3.12]), where
I (x) := {i = 1, ...,m : gi (x) = g (x)}.

Note that always I (x) 6= ∅.

Lemma 1 For each x ∈ Rn there exists εx > 0 such that

I (z) ⊂ I (x) whenever ‖z − x‖ < εx.

Proof. Reasoning by contradiction, suppose that there exist a sequence (zk) such that zk → x
and an associated ik ∈ I (zk) \I (x) . Since ik ∈ {1, ...,m}, which is a finite set, there will exist
i0 ∈ {1, ...,m} such that ik = i0 infinitely many times. If we restrict ourselves to the corresponding
subsequence (without relabeling), we can write by continuity,

gi (x) = lim
k→∞

gi (zk) = lim
k→∞

g (zk) = g (x) ,

and we get the contradiction i0 ∈ I (x) .

Finally, inspired by Db (x) (see (11)) we define the family D (x) formed by all subsets of indices
D ⊂ I (x) such that the system{

∇gi (x)′ d = 1, i ∈ D,
∇gi (x)′ d < 1 i ∈ I (x) \D

}
(16)

is consistent in the variable d ∈ Rn.

3.1 Outer limits of subdifferentials of polyhedral functions

This subsection deals with the particular case when the gi’s are affine functions; i.e.,

gi (x) := a′ix− bi, i = 1, ...,m,

where ai ∈ Rn and bi ∈ R are fixed. In this case, the corresponding max-function

g(x) := max
i=1,...,m

a′ix− bi, (17)

is a polyhedral function, and its subdifferential (in the sense of Clarke, which in this case coincides
with the usual subdifferential of convex analysis) writes as

∂g (x) = conv {ai | i ∈ I (x)} . (18)

6



Theorem 4 Let g be defined in (17). We have

lim sup
x→x, g(x)>g(x)

∂g (x) =
⋃

D∈D(x)

conv {ai, i ∈ D} .

Proof. First, let us prove the ‘⊃’ inclusion. Pick any D ∈ D (x) and consider d ∈ Rn such that (16)
fulfills. Then, for any α > 0 one has

gi(x+ αd) = a′i (x+ αd)− bi = gi(x) + α = g(x) + α for i ∈ D
gi(x+ αd) = a′i (x+ αd)− bi < gi(x) + α = g(x) + α for i ∈ I (x) \D

}
. (19)

Suppose 0 < α ‖d‖ < εx (defined in Lemma 1). Then, Lemma 1 together with (19) ensure g (x+ αd) =
g(x) + α and

∂g (x+ αd) = conv {ai, i ∈ D} .

Therefore
conv {ai, i ∈ D} = lim sup

α→0+

∂g (x+ αd) ⊂ lim sup
x→x, g(x)>g(x)

∂g (x) .

In order to prove the ‘⊂’ inclusion, take any u ∈ lim sup
x→x, g(x)>g(x)

∂g (x) . Let us write u = limk→∞ uk

with uk ∈ ∂g (xk) , g (xk) > g (x) (for all k ∈ N) and xk → x (without loss of generality we assume
‖xk − x‖ < εx for all k). Then the sequence (I (xk))k∈N has a constant subsequence because
I (xk) ⊂ {1, ...,m} for all k. Accordingly, let us assume without loss of generality that

I (xk) = D ⊂ I (x) for all k ∈ N,

where the last inclusion comes from Lemma 1. Since ∂g (xk) = conv {ai, i ∈ D} is a compact set
(independent on k), we obtain

u ∈ conv {ai, i ∈ D} . (20)

Pick any particular k ∈ N and define

d :=
xk − x

g (xk)− g (x)
.

Then, we have

a′id =
a′ixk − a′ix
g (xk)− g (x)

=
gi (xk)− gi (x)

g (xk)− g (x)

{
= 1 for all i ∈ D,
< 1 for all i ∈ I (x) \D.

Accordingly D ∈ D (x) , and the proof ends by appealing to (20).

Remark 3 Since (16) clearly implies that, for each D ∈ D (x) , conv{ai, i ∈ D} is contained in a
supporting hyperplane to conv {ai, i ∈ I (x)} , it follows that

lim sup
x→x, g(x)>g(x)

∂g (x) =
⋃

D∈D(x)

conv {ai, i ∈ D}

⊂ bd conv {ai, i ∈ I (x)}) = bd∂g (x) .

(The last equality comes from [2, Theorem 3.1]).

The next example shows that the previous inclusion may be strict.
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Example 1 (see [5, Example 4]) Consider the system (in R2 endowed with the Euclidean norm)

{x1 ≤ b1, x2 ≤ b2, x1 + x2 ≤ b3} ,

and the nominal data b = 03 and x = 02. The associated supremum function is given by

g (x) = max {x1, x2, x1 + x2} ,

and accordingly

bd conv {ai, i ∈ I (x)} = conv {a1, a2} ∪ conv {a1, a3} ∪ conv {a2, a3} .

However, ⋃
D∈D(x)

conv {ai, i ∈ D} = conv {a1, a3} ∪ conv {a2, a3} .

3.2 Extensions to the nonlinear differentiable case

In the following theorem, associated with a fixed point x ∈ Rn, we appeal to the new family of subsets
of indices

DAI (x) ⊂ D (x) , (21)

formed by all D ∈ D (x) such that {∇gi (x) , i ∈ D} is affinely independent. Moreover, the the-
orem appeals several times to an standard argument of differential calculus which is isolated in the
following lemma, where we use a dot standing for derivatives (recall that we are using the prime for
transposition).

Lemma 2 Let h : Rn → R be continuously differentiable and consider α : ]−a, a[ → Rn, with
a > 0, such that

∇h (α (0))′
•
α (0) > 0,

then, for any {tk} ↓ 0, there exists k0 verifying

h (α (tk)) > h (α (0)) , for k ≥ k0.

Proof. Consider the real function given by

γ (t) := h (α (t)) , − a < t < a.

We have that

γ (t) = γ (0) +
•
γ (0) t+ o (t) = h (α (0)) + t

(
∇h (α (0))′

•
α (0) +

o (t)

t

)
,

which entails the existence of ε > 0 such that

h (α (t)) = γ (t) > γ (0) = h (α (0)) , whenever 0 < t < ε.

Then, the statement of the current lemma follows straightforwardly.
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Theorem 5 Let g(x) := max
i=1,...,m

gi (x) , with gi : Rn → R continuously differentiable for all i, and

let x ∈ Rn. We have:

(i)
⋃
D∈DAI(x) conv {∇gi (x) , i ∈ D} ⊂ lim sup

x→x, g(x)>g(x)

∂g (x) ;

(ii) lim sup
x→x, x6=x

∂g (x) ⊂ bd ∂g (x) .

Moreover, the converse inclusion of (ii) also holds if, for all supporting hyperplane H to ∂g (x̄) , we
have that {∇gi (x̄) , i ∈ I (x̄)} ∩H is affinely independent.

Proof. (i) Take any D ∈ DAI (x) .. For the sake of simplicity, let us assume that D := {1, 2, ..., i0}
(i0 ≤ n+ 1 because of the definition of DAI (x)) and consider the system of equations

{hi (x) := gi+1 (x)− g1 (x) = 0, i = 1, ..., i0 − 1} . (22)

Since D ∈ DAI (x) , there exists d ∈ Rn such that

∇gi (x)′ d = 1, i = 1, ..., i0, (23)

which entails
∇hi (x)′ d = 0, i = 1, ..., i0 − 1.

Moreover, vectors∇hi (x) , i = 1, ..., i0 − 1, are linearly independent and d 6= 0n because of (23),
which actually entails i0 ≤ n.

If we write system (22) in the vectorial form

h (x) = 0i0−1, (24)

observe that x is a regular point of the surface S defined by (24). Moreover, if we denote by ∇h (x)
the matrix whose columns are∇h1 (x) , ...,∇hi0−1 (x) , we have

∇h (x)′ d = 0i0−1.

Then, there exists a differentiable curve α such that the arc

{α (t) , − a < t < a} ⊂ S, (a > 0) (25)

verifies
α (0) = x and

•
α (0) = d.

(See, e.g. [19, P. 325]).

Let us consider a sequence of scalars 0 < tk < a, k ∈ N such that tk → 0 and define

xk := α (tk) , for all k.

From (25), we have
g1 (xk) = ... = gi0 (xk) , k ∈ N. (26)

Let j ∈ I (x)�D and consider the function

hj := g1 − gj.
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Observe that
∇hj (α (0))′

•
α (0) = ∇hj (x)′ d > 0,

which entails (by Lemma 2), for k sufficiently large,

hj (xk) = g1 (xk)− gj (xk) > 0.

By the previous inequality and taking (26) and Lemma 1 into account, we have that,

I (xk) = D, for k large enough, (27)

and then
∂g (xk) = conv{∇gi (xk) , i ∈ D}.

Moreover, for i ∈ D, again applying Lemma 2, we have that

gi (xk) > gi (x) , for k large enough,

since∇gi (x)′ d = 1 > 0. Then,

g (xk) > g (x) , for k large enough

(recall (27)).

Finally,
lim
k→∞

∂g (xk) = lim
k→∞

conv {∇gi (xk) , i ∈ D} = conv {∇gi (x) , i ∈ D}

(with the limits being understood in the Painlevé-Kuratowski sense), yielding the aimed inclusion

conv {∇gi (x) , i ∈ D} ⊂ lim sup
x→x, g(x)>g(x)

∂g (x) .

(ii) Let u ∈ lim sup
x→x̄,x 6=x̄

∂g (x) be arbitrary. By definition, there exists a sequence (xk, uk) → (x̄, u)

such that xk 6= x̄ and uk ∈ ∂g (xk). After passing to a subsequence which we do not relabel, we
may assume without loss of generality that there exists an index set I ⊆ I (x̄) and a vector d 6= 0n
such that

I (xk) = I ∀k and
xk − x̄
‖xk − x̄‖

→ d.

Here, the first statement follows from the fact that I (xk) ⊆ I (x̄) for k large enough (recall Lemma
1) and that there exist only finitely many subsets of I (x̄). From

uk ∈ ∂g (xk) = conv {∇gi (xk) |i ∈ I (xk)} = conv {∇gi (xk) |i ∈ I}

it follows that uk =
∑

i∈I λ
k
i∇gi (xk) for some sequence λk ∈ R|I|+ satisfying

∑
i∈I λ

k
i = 1 for all k.

By compactness of the standard simplex in R|I| we may assume again without loss of generality that,
upon passing to another subsequence which we do not relabel, there exists some λ̄ ∈ R|I|+ satisfying∑

i∈I λ̄i = 1 such that λk → λ̄. Consequently,

uk →
∑
i∈I

λ̄i∇gi (x̄) = u

showing that
u ∈ conv {∇gi (x̄) , i ∈ I} . (28)
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Next, we prove the following relation involving the vector d introduced above:

∇gi (x̄)′ d ≥ ∇gj (x̄)′ d ∀i ∈ I ∀j ∈ I (x̄) . (29)

Indeed, if (29) were not true, then there existed i ∈ I and j ∈ I (x̄) such that ∇gi (x̄)′ d <
∇gj (x̄)′ d. Observe that I ⊆ I (x̄) implies that gi (x̄) = gj (x̄). As xk 6= x̄, we get that

gi (xk)− gj (xk)

‖xk − x̄‖
=

gi (xk)− gi (x̄)

‖xk − x̄‖
− gj (xk)− gj (x̄)

‖xk − x̄‖

= (∇gi (x̄)−∇gj (x̄))′
(

xk − x̄
‖xk − x̄‖

)
+

o (‖xk − x̄‖)
‖xk − x̄‖

,

where
o (‖xk − x̄‖)
‖xk − x̄‖

→ 0.

It follows that
gi (xk)− gj (xk)

‖xk − x̄‖
→ ∇gi (x̄)′ d−∇gj (x̄)′ d < 0.

Consequently, gi (xk) < gj (xk) for k large enough which entails the contradiction i /∈ I (xk) = I .

Now, (29) means that for all i ∈ I

∇gi (x̄) ∈ arg max {z′d | z ∈ {∇gj (x̄) , j ∈ I (x̄)}}
= arg max {z′d | z ∈ conv {∇gj (x̄) , j ∈ I (x̄)}}
= arg max {z′d | z ∈ ∂g (x̄)} =: A.

Now, since d 6= 0n, one has that A ⊆ bd ∂g (x̄). On the other hand, A is convex by convexity of
∂g (x̄). Therefore, the proven relation ∇gi (x̄) ∈ A for all i ∈ I along with (28) imply the desired
relation

u ∈ conv {∇gi (x̄) , i ∈ I} ⊆ A ⊆ bd ∂g (x̄) .

The following paragraphs are devoted to establish the equality

lim sup
x→x, x6=x

∂g (x) = bd ∂g (x)

under the following condition: "for all supporting hyperplane H to ∂g (x̄) , we have that
{∇gi (x̄) , i ∈ I (x̄)} ∩ H is affinely independent". So, we have to prove the remaining inclusion
"⊃". To this aim, take any u ∈ bd ∂g (x̄) and let us show the existence

{
xk
}
⊂ Rn converging to x,

with xk 6= x for all k, such that
u ∈ lim

k→∞
∂g
(
xk
)
.

Since u ∈ bd ∂g (x̄) , there exists a supporting hyperplane H to ∂g (x̄) at u; so, we can write
H = {z ∈ Rn : z′d = δ} , with 0n 6= d ∈ Rn, δ ∈ R,

u′d = δ and w′d ≤ δ, ∀w ∈ ∂g (x̄) = conv {∇gi (x̄) , i ∈ I (x)} . (30)

Let I ⊂ I (x̄) be such that {∇gi (x̄) , i ∈ I (x̄)} ∩H = {∇gi (x̄) , i ∈ I}; in other words,

∇gi (x)′ d = δ for all i ∈ I, and∇gi (x)′ d < δ when i ∈ I (x) \ I. (31)

11



Then, one easily checks that
u ∈ conv {∇gi (x̄) , i ∈ I}.

In fact, if we write
u =

∑
i∈I(x)

λi∇gi (x)

for some λ ∈ R|I|+ with
∑

i∈I λi = 1, we have

δ = u′d =
∑
i∈I

λi∇gi (x)′ d+
∑

i∈I(x)\I

λi∇gi (x)′ d,

which implies λi = 0 for all i ∈ I (x) \ I, as consequence of (31).

By the current assumption, {∇gi (x̄) , i ∈ I} is affinely independent and, by simplicity, we may as-
sume I = {1, ..., i0} (i0 ≤ n since dimH = n− 1). Then, from

gi (x) = g1 (x) , and (∇gi (x̄)−∇g1 (x̄))′ d = 0, for all i ∈ I,

by proceeding as in the proof of condition (i) above, we can establish the existence of a differentiable
curve α such that

gi (α (t))− g1 (α (t)) = 0, whenever − a < t < a (a > 0),

and
α (0) = x,

•
α (0) = d.

Again, let us consider a sequence of scalars 0 < tk < a, k ∈ N, such that tk → 0 and define

xk := α (tk) , for all k.

Since
•
α (0) = d 6= 0n, we may assume that xk 6= x for all k. Then, as in the proof of condition (i) ,

we have for k large enough

g1 (xk) = ... = gi0 (xk) , (32)

gj (xk) < g1 (xk) , j ∈ I (x) \ {1, ..., i0},

which yields (taking also Lemma 1 into account)

I (xk) = I, and so ∂g (xk) = conv {∇gi (xk) , i ∈ I}.

Consequently,
u =

∑
i∈I

λi∇gi (x) = lim
k→∞

∑
i∈I

λi∇gi (xk) ∈ lim
k→∞

∂g (xk) ,

which finishes the proof.

Remark 4 Recall that [2, Theorem 3.1] shows that condition (ii) in the previous theorem also holds
as equality in the case when function g is convex, without differentiability assumptions, in which case,
∂g represents the usual subdifferential of convex analysis.
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3.3 Application to the calmness modulus of C1- systems

As immediate consequence of Theorems 1 and 5 we obtain the following result which provides an
upper bound for the calmness modulus of C1- systems and, in addition, a lower bound in the case of
C1- convex systems.

Corollary 1 Let us consider the C1- system introduced in (3). Let F be the associated feasible set
mapping and g the max-function (5), i.e.,

F (b) := {fi (x) ≤ bi, for all i = 1, ...,m}

and
g (x) := max

i=1,...,m
fi (x)− bi, x ∈ Rn.

If
(
b, x
)
∈ gphF is such that g (x) = 0, then:

(i) We have
clmF(b, x) ≤ (d∗ (0n, bd ∂g (x)))−1 ;

(ii) If, additionally, functions fi, i = 1, ...,m, are convex, then(
min

D∈DAI(x)
d∗ (0n, conv {∇fi (x) , i ∈ D})

)−1

≤ clmF(b, x).

Proof. (i) The proof comes straightforwardly from Theorem 1(i) and taking the following chain of
inclusions into account :

lim sup
x→x, g(x)>0

∂g (x) ⊂ lim sup
x→x, x 6=x

∂g (x) ⊂ bd ∂g (x) .

(The first inclusion is trivial, while the second comes from Theorem 5(ii) .)

(ii) is a direct consequence of Theorem 1(ii) and Theorem 5(i) .

Both inequalities in the previous corollary can be either satisfied as equalities or not, as the following
examples show. In the first example, both inequalities are equalities indeed.

Example 2 Let us consider the system

σ (b) :=

{
g1(x) := 2x2

1 + x2
2 + 4x1 + 2x2 ≤ b1,

g2(x) := x2
1 + x2

2 − 4x1 ≤ b2

}
.

and take the point x = 02 and the fixed parameter b = 02. The associated max-function g : R2 → R
is defined by

g(x) = max{g1(x), g2(x)}.
It is immediate that⋃

D∈DAI(x)

conv {∇gi (x) , i ∈ D} = conv {(−4, 0), (4, 2)} = ∂g(x),

which entails (according to Theorem 5)

lim sup
x→x, g(x)>0

∂g(x) = conv {(−4, 0), (4, 2)} .

So, all distances in the previous corollary coincide and, in fact,

clmF(b, x) := [d∗ (0n, conv {(−4, 0), (4, 2)})]−1 .
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In the following example, the first inequality in the previous corollary is strictly satisfied, while the
second is an equality.

Example 3 Consider the system

σ (b) :=


g1(x) := 2x2

1 + x2
2 + 4x1 + 2x2 ≤ b1,

g2(x) := x2
1 + x2

2 − 4x1 ≤ b2,
g3(x) := −x1 ≤ b3,


and take x = 02 and b = 03. Now, the associated max-function g : R2 → R is given by

g(x) = max{g1(x), g2(x), g3(x)}.

In this case, we easily see that:⋃
D∈DAI(x)

conv {∇gi (x) , i ∈ D} = conv {(−4, 0), (4, 2)} .

Moreover, let us see that

lim sup
x→x, g(x)>0

∂g(x) = conv {(−4, 0), (4, 2)} .

Observe that g(x) > 0 implies g(x) = max{g1(x), g2(x)} > g3(x). In fact, one can easily check
that g2(x) ≤ g3(x) yields g3(x) ≤ 0 and, then, if simultaneously g1(x), g2(x) ≤ g3(x), we have
g(x) ≤ 0. As a consequence of that,

lim sup
x→x, g(x)>0

∂g(x) ⊂ lim sup
x→x, g(x)>g3(x)

∂g(x)

⊂ lim
x→x

conv {∇g1(x),∇g2(x)} = conv{(−4, 0), (4, 2)} .

Then,
clmF(b, x) = [d∗ (0n, conv {(−4, 0), (4, 2)})]−1 .

However,
bd ∂g (x) = bdconv {(−4, 0), (4, 2), (−1, 0)} ,

and then,
clmF(b, x) < [d∗ (0n, bdconv {(−4, 0), (4, 2), (−1, 0)})]−1 .

Remark 5 Let us remark that in the last two examples, if we approach x by directional sequences,
i.e. sequences of the type xk = x + tku with u 6= 02 and tk → 0, and we represent this directional

convergence with the symbol x
d→ x, we shall obtain only the extreme points of the sets generated

by arbitrary convergent sequences. More specifically, in both Examples 2 and 3,

lim sup
x

d→x, g(x)>0

∂g(x) = {(−4, 0), (4, 2)}  bd ∂g(x).

This observation corresponds to the statement in Theorem 6.3.6 in Chapter VI of [13].

In the following example the second inequality in Corollary 1 is strict, while the first is in fact an equality.
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Example 4 Consider the system

σ (b) :=

{
x2

1 + x2
2 ≤ b1,

x1 + x2 ≤ b2,

}
and take x = 02 and b = 02.

In this case, {2} is the only element in DAI (x) . So,⋃
D∈DAI(x)

conv {∇gi (x) , i ∈ D} = {(1, 1)}.

However, one obtains from [2, Theorem 3.1] (observing that g(x) > 0⇔ x 6= x in this example)

lim sup
x→x, g(x)>0

∂g(x) = lim sup
x→x, x 6=x

∂g(x) = bd ∂g(x) = conv {(0, 0), (1, 1)} ,

and then clmF(b, x) = +∞..

Remark 6 If we modify g1 in the previous example by adding 1
2
(x1+x2), then one still hasDAI (x) =

{{2}} and, by approaching 02 by points of the circumference x2
1 + x2

2 = 1
2
(x1 + x2) different from

02 one checks
lim sup

x→x, g(x)>0

∂g(x) = bd ∂g(x) = conv
{

(1
2
, 1

2
), (1, 1)

}
,

and then clmF(b, x) =
∥∥(1

2
, 1

2
)
∥∥−1

∗ .

4 Computing the calmness modulus of the argmin mapping for
linear programs

In this section, a suitable Karush-Kuhn-Tucker (KKT) index set approach will allow us to derive the
exact calmness modulus of S, defined in (12), at

((
c, b
)
, x
)
∈ gphS under non-uniqueness as-

sumptions; i.e., without assuming S(c, b) = {x}. In our way to prove this result, we have to extend
the lower bound and sharpen the upper bound given respectively in [4, Theorems 6 and 7] (see Section
2 for more details).

To start with, the next example shows that inequality in (15) may be strict when S
(
c, b
)

is not a
singleton (see Remark 2) and gives a hint to sharpen such an upper bound. In Corollary 2 we will see
that this sharpened upper bound is in fact the exact calmness modulus of S .

Example 5 Consider the nominal problem (in R2 endowed with the Euclidean norm)

P
(
c, b
)

: Min x1

s.t. −x1 ≤ 0, (i = 1),
−x2 ≤ 0, (i = 2),
−x1 − x2 ≤ 0, (i = 3).

Let x := 02. By appealing to Theorem 2, applied to mappingsLD –which are nothing else but feasible
set mappings associated with enlarged systems– at

((
b,−bD

)
, x
)
∈ gphLD with D ∈ Kc,b (x) ,

we obtain the following table:
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D ∈ Kc,b (x) clmLD
((
b,−bD

)
, x
)

{1} , {1, 2}
√

2

{1, 3}
√

5

Now Theorem 3 ensures clmS(
(
c, b
)
, x) ≤

√
5.

An ad hoc geometrical argument could show that clmS(
(
c, b
)
, x) =

√
2 in the previous example.

The underlying idea is that those D ∈ Kc,b (x) with some zero KKT multiplier λi in an expression
−c =

∑
i∈D λiai are not relevant. In other words, the key fact consists of confining ourselves to those

KKT subsets which are minimal with respect to the inclusion order, and consequently the associated
multipliers are all of them nonzero. Accordingly we consider, associated with (

(
c, b
)
, x) ∈ gphS , the

family of minimal KKT subsets given by

Mc,b (x) =
{
D ∈ Kc,b (x) : D is minimal for the inclusion order

}
.

Observe that in the previous example one hasMc,b (x) = {{1}} ..

Remark 7 In the special case c = 0n it is easy to see (thanks to Theorem 3) that

clmS(
(
c, b
)
, x) = clmSc(b, x) = clmF(b, x),

and we already have an expression for the latter. So, in the sequel we could assume c 6= 0n. Nev-
ertheless, the case c = 0n is also included in our results if we conveneMc,b (x) = {∅} whenever
c = 0n, and L∅ := F .

Theorem 6 Let
(
c, b
)
∈ Rn × Rm, and assume x ∈ S

(
c, b
)
. Then

clmS(
(
c, b
)
, x) ≤ max

D∈Mc,b(x)
clmLD

((
b,−bD

)
, x
)
. (33)

Proof. Under the current hypotheses Theorem 3 establishes

clmS(
(
c, b
)
, x) = clmSc(b, x),

where Sc := S (c, ·) ; i.e., Sc (b) = S (c, b) for each b ∈ Rm. Let us write

clmSc(b, x) = lim
r→∞

d
(
xr,S

(
c, b
))∥∥br − b∥∥∞ (34)

for some Rm 3 br → b (with br 6= b for all r ∈ N) and some Sc(br) 3 xr → x. According to the
KKT conditions, take for each r a certain Dr ⊂ Tbr (xr) with |Dr| ≤ n (because of Carathéodory’s
Theorem) such that

−c ∈ cone {ai, i ∈ Dr} . (35)

The finiteness of {1, ...,m} enables us assume for a suitable subsequence (denoted as the whole
sequence for simplicity) thatDr = D (independent of r). Then it is clear that, for such a subsequence,
in (35) we may assume that all KKT multipliers are nonzero and that setD is minimal with this property.
Moreover D ⊂ Tbr (xr) for all r clearly implies D ⊂ Tb (x) by just taking limits in a′ix

r = bri for each
i ∈ D. Accordingly we can write

D ∈Mc,b (x) .
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Since, on the one hand, D ⊂ Tbr (xr) clearly implies xr ∈ LD (br,−brD) and, on the other hand,
LD
(
b,−bD

)
⊂ S

(
c, b
)

(i.e., every KKT point is optimal), (34) entails, taking into account the obvious
fact that ∥∥(br, brD)−

(
b,−bD

)∥∥
∞ =

∥∥br − b∥∥∞
(the first one in Rm × RD and the second in Rm),

clmSc(b, x) ≤ lim sup
r→∞

d
(
xr,LD

(
b,−bD

))∥∥(br, brD)−
(
b,−bD

)∥∥
∞

≤ clmLD
((
b,−bD

)
, x
)
.

Next we are going to see that the right-hand-side of (33) already stands as a lower bound on clmSc(b, x)
(and hence on clmS(

(
c, b
)
, x)) in the following semi-infinite setting, which obviously includes the

case when T is finite:

� T is a compact Hausdorff space,

� The given function a ≡ (at)t∈T belongs to C (T,Rn) ,

� Parameter b ≡ (bt)t∈T belongs to C (T,R) .

Hereafter in this section let us assume the previous framework. The rest of notation remains un-
changed, but adapted to the new setting. Theorem 6 in [4] shows that the last term in (15), i.e.,
maxD∈Kc,b(x) clmLD

((
b,−bD

)
, x
)
, is a lower bound on clmSc(b, x) in this new setting when we

also assume: (i) S(c, b) = {x}, (ii) the Slater constraint qualification at the nominal parameter b (i.e.,
the existence of some x̂ ∈ Rn such that a′tx̂ < bt for all t ∈ T ). In Theorem 7 below we show that the
(possibly) sharper upper bound maxD∈Mc,b(x) clmLD

((
b,−bD

)
, x
)

also stands as a lower bound
without assuming neither (i) nor (ii).

For any D ∈Mc,b̄ (x) , we consider the supremum function, fD : Rn → R given by

fD (x) := sup
{
〈at, x〉 − b̄t, t ∈ T ; − 〈at, x〉+ b̄t, t ∈ D

}
= sup

{
〈at, x〉 − b̄t, t ∈ T \D;

∣∣〈at, x〉 − b̄t∣∣ , t ∈ D} ,
Observe that

LD
(
b̄,−b̄D

)
= [fD = 0] ⊂ S

(
c̄, b̄
)

for all D ∈Mc,b̄ (x) . (36)

Let us also observe that, as a direct consequence of Theorem 1,

clmLD
((
b̄,−b̄D

)
, x
)

= lim sup
x→x

fD(x)>0

1

d∗ (0n, ∂fD (x))
. (37)

Proposition 1 In our current semi-infinite setting, let
((
c̄, b̄
)
, x
)
∈ gphS. Then

LD
(
b,−bD

)
= S

(
c̄, b̄
)
, for all D ∈Mc,b̄ (x) .

Proof. We only have to prove the inclusion "⊃"(recall (36)). Reasoning by contradiction, assume the
existence of a certain D ∈ Mc,b̄ (x) and some x̂ ∈ S

(
c̄, b̄
)
\ LD

(
b,−bD

)
. Observe that, since x̂

is feasible for P
(
c̄, b̄
)
, we have

a′t(x− x̂) = bt − a′tx̂ ≥ 0, for all t ∈ D, (38)
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while condition x̂ /∈ LD
(
b,−bD

)
yields

a′t(x− x̂) = bt − a′tx̂ > 0, for some t ∈ D. (39)

Moreover, D ∈Mc,b̄ (x) entails the existence of a λt > 0, for each t ∈ D such that

−c =
∑
t∈D

λtat.

Then
−c′(x− x̂) =

∑
t∈D

λta
′
t(x− x̂).

Observe that c′(x− x̂) = 0 (since x, x̂ ∈ S
(
c̄, b̄
)
), which, according to (38), yields

λta
′
t(x− x̂) = 0, for all t ∈ D.

Then, applying (39) we attain the contradiction (with the minimality condition of D)

λt = 0, for some t ∈ D.

Theorem 7 In our current semi-infinite setting, let
((
c̄, b̄
)
, x
)
∈ gphS. Then

clmS
((
c̄, b̄
)
, x
)
≥ clmSc̄

(
b̄, x
)
≥ sup

D∈Mc,b̄(x)

clmLD
((
b̄,−b̄D

)
, x
)
.

Proof. The first inequality comes directly from the definition of calmness modulus.

Now, we are going to prove the second inequality in the non-trivial case c̄ 6= 0n (see Remark 7). Take
any D ∈ Mc,b̄ (x) and let us see that clmSc̄

(
b̄, x
)
≥ clmLD

((
b̄,−b̄D

)
, x
)
. From (37), we can

write

clmLD
((
b̄,−b̄D

)
, x
)

= lim
r→+∞

1

‖ur‖∗
,

for a certain sequence {ur}r∈N verifying ur ∈ ∂fD (xr) , for all r, where {xr}r∈N is such that

lim
r→+∞

xr = x and fD (xr) > 0, for all r.

In particular, xr /∈ LD
(
b̄,−b̄D

)
, for all r, and then, applying Proposition 1,

xr /∈ Sc̄
(
b̄
)
, for all r.

For each r, let x̃r ∈ Sc̄
(
b̄, x
)

a best approximation of xr in Sc̄
(
b̄
)

; i.e.,

‖xr − x̃r‖ = d
(
xr,Sc̄(b̄)

)
, for all r.

We have, for each r,

‖xr − x̃r‖ ‖ur‖∗ ≥ (ur)′(xr − x̃r) ≥ fD (xr)− fD (x̃r) = fD (xr) ,
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where we have appealed again to the previous proposition to ensure that fD (x̃r) = 0, for all r.
Consequently,

‖xr − x̃r‖ ≥ fD (xr)

‖ur‖∗
, for all r. (40)

Now, following the same argument as is the last part of the proof of [4, Theorem 6] (just by adapting
the notation) we may construct a sequence {br} ⊂ C (T,R) such that

xr ∈ Sc̄ (br) and
∥∥br − b∥∥∞ ≤ (1 +

1

r

)
fD (xr) , for all r. (41)

Just for completeness, at this moment we write the definition of br. For each r,

brt := (1− ϕr (t)) a′tx
r + ϕr (t)

(
bt + fD (xr)

)
,

where ϕr (t) is a continuous function from T to [0, 1] such that

ϕr (t) =

{
0 if t ∈ D,
1 if a′tx

r − bt ≤ −
(
1 + 1

r

)
fD (xr) ,

whose existence is guaranteed by Urysohn’s lemma.

Finally, taking (40) and (41) into account, we obtain the aimed inequality

clmSc̄
(
b̄, x
)
≥ lim

r→∞

‖xr − x̃r‖∥∥br − b∥∥∞ ≥ lim
r→∞

(
1 +

1

r

)−1

‖ur‖−1
∗

= clmLD
((
b̄,−b̄D

)
, x
)
.

Corollary 2 Assume that T is finite and let
((
c̄, b̄
)
, x
)
∈ gphS. Then

clmS
((
c̄, b̄
)
, x
)

= clmSc̄
(
b̄, x
)

= max
D∈Mc,b̄(x)

clmLD
((
b̄,−b̄D

)
, x
)
.

5 Conclusions

The main contributions of this work are developed in two different directions: the analysis of certain
outer limits of subdifferentials of max-functions

g := max
i=1,...,m

gi,

under different assumptions, and the computation of the calmness moduli for certain feasible and
optimal set mappings. We point out the fact that the two different kind of results have a common
starting point: the background about the calmness modulus of feasible set mappings associated with
linear inequality systems.

In summary, the main contributions of the present paper are:
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� With respect to outer limit of subdifferentials, in the more general case of functions gi’s being
continuously differentiable, we have the chain of inclusions (Theorem 5):⋃

D∈DAI(x)

conv {∇gi (x) , i ∈ D} ⊂ lim sup
x→x, g(x)>0

∂g (x) (42)

⊂ lim sup
x→x, x 6=x

∂g (x) ⊂ bd ∂g (x) .

(Recall that last inclusion is in fact an equality when the gi’s are convex, even without differen-
tiability assumptions).

� The same Theorem 5 provides a sufficient condition (different from convexity) under which the
last inclusion in (42) becomes an equality.

� In the particular case when the gi’s are affine, we additionally have (Theorem 4):⋃
D∈DAI(x)

conv {∇gi (x) , i ∈ D} ⊂
⋃

D∈D(x)

conv {∇gi (x) , i ∈ D}

= lim sup
x→x, g(x)>0

∂g (x) .

(See (16) and (21) for the definitions of D (x) and DAI (x) .)

Then, we apply the chain of inclusions (42) to derive estimations for the calmness modulus of the
feasible set mapping

F (b) := {fi (x) ≤ bi, for all i = 1, ...,m} ,
associated with a C1- system. In this setting we consider g (x) := maxi=1,...,m fi (x)− bi, x ∈ Rn.
Specifically, the main results related to clmF(b, x) are:

� An upper bound:
clmF(b, x) ≤ (d∗ (0n, bd ∂g (x)))−1 ;

� A lower bound if, additionally, fi, i = 1, ...,m, are convex:(
min

D∈DAI(x)
d∗ (0n, conv {∇fi (x) , i ∈ D})

)−1

≤ clmF(b, x).

� In Section 4, an exact formula for the calmness modulus of S, defined in (12), at ((c, b), x) ∈
gphS , without uniqueness assumptions, is provided . Specifically, Corollary 2 yields the exact
formula:

clmS
(
(c̄, b̄), x

)
= sup

D∈Mc,b̄(x)

clmLD
((
b̄,−b̄D

)
, x
)
, (43)

where LD is nothing else but a feasible set mapping (associated to a certain enlarged system).
Moreover, we recall the fact that the supremum in the right hand side of (43) still constitutes a
lower bound for clmS

(
(c̄, b̄), x

)
in the semi-infinite case, again without uniqueness assump-

tions.

Finally, we point out the fact that in our analysis of outer subdifferentials and calmness moduli we are
always looking for conceptually tractable expressions (exact formulae or estimations), in the sense
that they only involve the nominal data (nominal point and nominal parameter).
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