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Abstract

We consider multistage stochastic linear optimization problems combining joint dynamic prob-
abilistic constraints with hard constraints. We develop a method for projecting decision rules onto
hard constraints of wait-and-see type. We establish the relation between the original (infinite
dimensional) problem and approximating problems working with projections from different sub-
classes of decision policies. Considering the subclass of linear decision rules and a generalized
linear model for the underlying stochastic process with noises that are Gaussian or truncated
Gaussian, we show that the value and gradient of the objective and constraint functions of the
approximating problems can be computed analytically.

1 Introduction

Probabilistic constraints were introduced some fifty years ago under the name ’chance constraints’ by
Charnes and Cooper [7]. A probabilistic constraint is an inequality

P (g(x, ξ) ≤ 0) ≥ p, (1)

where g is a mapping defining a random inequality system, x is a decision vector, and ξ is a random
vector living on a probability space (Ω,A,P). The meaning of (1) is the following: a decision x is
feasible if and only if the random inequality system g(x, ξ) ≤ 0 is satisfied at least with probability
p ∈ (0, 1]. Choosing p close to one reflects the wish for robust decisions which moreover can be
interpreted in a probabilistic way.

In the beginning, efforts focussed on finding explicit deterministic equivalents for (1), i.e., on finding
analytical functions such that (1) is equivalent with the inequality ϕ(x) ≥ p, see [26] for instance.
Even if such instances are rare and usually related with special assumptions, e.g., one-dimensional
random variables, individual probabilistic constraints, or assuming independent components of the
random vector, it has been successfully applied more recently using Boolean Programming to attack
joint probabilistic constraints with dependent random right-hand sides [22, 23] and later extended to
stochastic programming problems with joint probabilistic constraints and multi-row random technology
matrix [1].

A new era in the theoretical and algorithmical treatment of probabilistic constraints began with the
pioneering work by Prékopa in the early seventies, when the theory of log-concave probability mea-
sures allowed to derive the convexity of feasible decisions induced by a large class of probabilistic
constraints (1). Along with bounding and simulation techniques outperforming crude Monte Carlo ap-
proaches, this paved the way for applying efficient methods from convex optimization for the numerical
solution of probabilistically constrained optimization problems. The monograph [31] is still the most
important standard reference in this area.

Another breakthrough in this direction happened in the early nineties and was related with efficient
codes for numerical integration of multivariate normal and t-probabilities due to Genz [14]. These
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codes are to the best of our knowledge the best performing ones in this area, up until now. For a recent
survey on this topic, we refer to the monograph [15]. Along with a reduction technique which allows us
to lead back analytically the computation of gradients to the computation of values in (1), these codes
may be used for solving probabilistically constrained optimization problems in meaningful dimension
of up to a few hundred (as far as the random vector is concerned). For some recent applications in
energy management, we refer to [41] and [42].

Alternative solution methods rely on convex approximations of the chance constraints, see for instance
[28] (where Bernstein approximations are used) and [9], and on the scenario approach to build com-
putationally tractable approximations as in [4], [5], [10].

Applications of probabilistic constraints are abundant in engineering and finance (for an overview
on the theory, numerics and applications of probabilistic constraints, we refer to, e.g., [38, 31], [31],
and [32]). Within engineering, power management problems are dominating as far as probabilistic
constraints are concerned. In particular, hydro reservoir management is a fruitful instance for this
class of optimization problems. We may refer to the basic monograph [25] and to some exemplary
work in this field ([8], [12], [13], [17], [24], [27], [33], [35]).

In many applications, the decision x has to be taken before the realization of the random parameter ξ
is observed (’here-and-now decisions’). However, often, decisions may depend on time, i.e., the vector
x represents a discrete decision process. In such case, the ’here-and-now’ setting of (1) means that
decisions for the whole time period are taken prior to observing the random parameter, which is now
a discrete stochastic process. Then, inequality (1) represents a static probabilistic constraint because
the decision process does not take into account the gain of information over time while observing the
random process. To overcome this deficiency, one may pass from a decision vector x = (x1, . . . , xT )
to a closed loop decision policy

x = (x1, x2(ξ1), x3(ξ1, ξ2), . . . , xT (ξ1, . . . ξT−1)) (2)

each component of which represents a function of previously observed values of the random pro-
cess for a given time. A simple way to compute a closed loop strategy is the application of a rolling
horizon policy which at any time of the horizon hedges against future uncertainty conditional to past
realizations of the random process (see, e.g., [33], [35], [34], [17], [18], [19]). Only the obtained opti-
mal decision for the next time step is applied in reality. Another possibility consists in computing the
policy at the beginning of the optimization period plugging (2) into (1) and (1) becomes a dynamic
probabilistic constraint now acting on a variable x from an infinite dimensional space.

In this setting, in order to return to a numerically tractable problem in finite dimensions, the decision
policies are often parameterized, the most common approach being the introduction of linear decision
rules, i.e., xi(ξ) = Aξ + b for appropriate A, b which now become the finite-dimensional substitutes
for the originally infinite dimensional variables. This strategy has been introduced to probabilistically
constrained hydro reservoir problems as early as 1969 [36]. It was used there (and in subsequent
publications) in the context of so-called individual probabilistic constraints where each component of
the given random inequality system is individually turned into a probabilistic constraint:

P (gi(x, ξ) ≤ 0) ≥ p (i = 1, . . . ,m).

The big advantage of such individual constraints is that - in case the component gi(x, ξ) is separable
with respect to ξ - they are easily converted into explicit constraints via quantiles. In particular, if g
happens to be a linear mapping and the objective is linear too, then all one has to do to solve such a
probabilistic optimization problem is to apply linear programming. It is well known, however, that the
chosen probability level p in an individual model may by far not correspond to the level in a joint model,
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given by (1), where the probability is taken over the entire inequality system. In [41] a hydro reservoir
problem is presented where at an optimal release policy the level constraints are satisfied in each
time interval with probability 90% individually, whereas the probability of keeping the level constraints
through the whole time period is as low as 32%. This observation strongly suggests to deal with the
joint model (1) albeit much more difficult to treat algorithmically.

Joint probabilistic constraints in the closed loop sense discussed above, have been investigated in [3]
again in the context of a reservoir problem. Here a highly flexible piecewise constant approximation of
decision policies x(ξ) was considered and it turned out that the optimal policies of the given problem
were definitely not linear. However, a sufficiently fine piecewise approximation requires a big compu-
tational effort and limits the applicability of the model to a few time stages like three or four. Therefore,
picking up again the idea of parameterized (in particular, linear) decision rules but now in the context
of joint constraints appears to be reasonable.

Other authors embed optimization problems with dynamic probabilistic constraints into a dynamic
programming scheme of optimal control, however, typically imposing simplifications with regard to the
joint system of constraints like the assumption of independent components, or of a discrete distribution
(scenarios) or of an individualized (via Boole-Bonferroni inequality) surrogate model (e.g., [6, 29]).

The aim of the current paper is to discuss several modeling issues in the context of dynamic proba-
bilistic constraints putting the emphasis on

� joint probabilistic constraints as in (1);

� continuous multivariate distributions of the random vector (in particular, Gaussian) with typically
correlated components;

� parameterized decision rules (in particular, linear and projected linear ones);

� mixed probabilistic and hard (almost sure) constraints.

We do not intend to investigate the so-called time consistent models for dynamic probabilistic con-
straints as it was done, for instance, in [6]. This issue has been considered so far in the framework of
Dynamic Programming, where the assumption of the random vector having independent components
is paramount, e.g., [2]. Moreover, typically, a discrete distribution is assumed for numerical analysis.
As pointed out above, we are interested here in continuously distributed distributions with potentially
correlated variables. Though it seems possible to establish time consistent models for dynamic chance
constraints under multivariate Gaussian distribution, this issue would complicate the analysis we have
in mind here and is yet to be explored in future research.

Moreover, the focus of this paper is not to develop a new algorithm neither the study of a concrete
application, although a simple hydro reservoir problem will guide us as an illustration. Our idea is
rather to provide a modeling framework taking into account the items listed above and yielding a link
to algorithmic approaches for static probabilistic constraints. The latter have been successfully dealt
with numerically in the context of linear probabilistic constraints under multivariate Gaussian (and
Gaussian like) distribution (see, e.g., [31, 34, 41, 42]).

The paper is organized as follows: Section 2 presents a general linear multistage problem with proba-
bilistic and hard constraints. It describes a method for projecting decision rules onto hard constraints of
wait-and-see type. It finally establishes the relation between the original (infinite dimensional) problem
and approximating problems working with projections from different subclasses of decision policies.
These subclasses are kept very general in this section while they are specialized to linear decision
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rules in Section 3. In that same section the probabilistic time series model we intend to use for the dis-
crete stochastic process is made precise. It is clarified, how the objective, the probabilistic constraint
and the hard constraints look like under this probabilistic model and the assumed linear decision rules.
Finally, Section 4 explicitly develops the shape of general optimization problems introduced in Section
2 when assuming multivariate Gaussian and truncated Gaussian models for the discrete process.
Advantages and difficulties for the different problems are discussed.

2 A linear multistage problem with probabilistic constraints

2.1 The general model

For given T ∈ N with T ≥ 2, we consider a T -stage stochastic linear minimization problem with the
following random constraints:

t∑
τ=1

At,τyτ +
t∑

τ=1

Bt,τξτ ≤ bt, t = 1, . . . , T. (3)

Here, for t = 1, . . . , T , yt are nt-dimensional decision vectors, ξt are Mt-dimensional random vec-
tors, At,τ and Bt,τ are given matrices of orders (lt, nτ ) and (lt,Mτ ), respectively, and bt ∈ Rlt are
given vectors. In what follows, the index ’t’ will be interpreted as time and yt and ξt represent discrete
decision and stochastic processes, respectively, having finite horizon. In this time-dependent setting
we shall assume that all components of the random process have the same dimension M1 = · · · =
MT =: M . The joint random vector ξ = (ξ1 . . . , ξT ) ∈ RMT is supposed to live in a probability
space (Ω,A,P). Similarly to traditional multistage stochastic programming, we shall assume that the
decision yt is taken in the beginning of time interval [t, t + 1) but the random vector ξt is observed
only at the end of that same interval. Therefore, the realization of ξt is unknown at the time one has
to decide on yt. On the other hand, in order to take into account the gain of information due to past
observations of randomness, the decision yt is allowed to depend on ξ1:t−1 := (ξ1, . . . , ξt−1) such
that yt is Borel measurable. In the following, we will refer to the yt (ξ1:t−1) , t = 1, . . . , T , (including
the deterministic first stage decision y1 (ξ1:0) := y1) as decision policies rather than decision vec-
tors in order to emphasize their functional character. Summarizing, we are dealing with the following
problem:

minimize E
∑T

t=1〈ht, yt (ξ1:t−1)〉 subject to
t∑

τ=1

At,τyτ (ξ1:τ−1) +
t∑

τ=1

Bt,τξτ ≤ bt, t = 1, . . . , T, (4)

where E is the expectation operator.

Example 2.1 As an illustration, we consider a two-stage problem for the optimal release y of a hydro-
reservoir under stochastic inflow ξ. The released water is used to produce and sell hydro-energy at
a price p which is assumed to be known in advance. Given the two stages, these quantities have
components ξ = (ξ1, ξ2), p = (p1, p2), y = (y1, y2(ξ1)). The reservoir level is required to stay at
both stages between given lower and upper limits `lo, `up, respectively. Finally, the release is supposed
to be bounded by fixed operational limits ylo, yup, respectively, for turbining water at both time stages.
Denoting by `0 the initial water level in the reservoir, the random cost is given by−(p1y1 + p2y2(ξ1))
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while the random constraints can be written

`lo ≤ `0 + ξ1 − y1 ≤ `up

`lo ≤ `0 + ξ1 + ξ2 − y1 − y2(ξ1) ≤ `up

ylo ≤ y1 ≤ yup

ylo ≤ y2(ξ1) ≤ yup.

(5)

It is easy to see that this is a special instance of problem (4) with data

h := −p, A1,1 := A2,2 :=


−1

1
1
−1

 , A2,1 :=


−1

1
0
0

 ,

B1,1 := B2,1 := B2,2 :=


1
−1

0
0

 , b1 := b2 :=


`up − `0
`0 − `lo
yup

−ylo

 .

As far as the constraints are concerned, satisfying them in expectation only, would result in decisions
leading to frequent violation of constraints which is not desirable for a stable operation say of techno-
logical equipment, etc. At the other extreme, constraints could be required to hold almost surely, thus
yielding very robust decisions avoiding violation of constraints with probability one. In that case, we
obtain the well-defined optimization problem

minimize E
∑T

t=1〈ht, yt (ξ1:t−1)〉 subject to
t∑

τ=1

At,τyτ (ξ1:τ−1) +
t∑

τ=1

Bt,τξτ ≤ bt t = 1, . . . , T, P-almost surely. (6)

If in the constraints of (6) one had that BT,T = 0, then the last component ξT of the random process
would not enter the constraints and (6) would represent a conventional multistage stochastic linear
program. Note, however, that B2,2 6= 0 in the two-stage problem (5) and so the random inflow ξ2
observed only after taking the last decision y2(ξ1) plays a role in some of the (level) constraints.
In such cases, insisting on almost sure satisfaction of constraints may be impossible in particular
for unbounded random distributions. In (5), for instance, no matter what has been observed (ξ1) or
decided on (y1,y2(ξ1)) until the beginning of the second time interval, the last unknown inflow ξ2 could
always be large enough to eventually violate the upper level constraint

`0 + ξ1 + ξ2 − y1 − y2(ξ1) ≤ `up.

Therefore, one has to look for alternative models for such constraints leaving the possibility of a ’con-
trolled’ violation. These observations lead us to distinguish in (6) between hard constraints which have
to be satisfied almost surely for physical or logical reasons and soft constraints which can be dealt
with in a more flexible way. A typical example for hard constraints are the lower and upper limits for
the amounts of turbined water (ylo ≤ y1, y2(ξ1) ≤ yup) in (5): there is no turbining beyond the given
operational limits just for physical reasons.

On the other hand, the reservoir level constraints could be considered to be soft ones. Suppose,
for instance, that `lo in (5) represents the physical lower limit of the reservoir below which no wa-
ter is released and turbined. Then, a violation of the lower level constraint can never happen and
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so the corresponding two inequalities can be removed from (5). Doing so, one has to take into ac-
count, however, that not the total amount of the release policies y1 and y2(ξ1), respectively, can be
turbined and sold at the given prices but only the part not violating the lower level constraint, i.e.,
min{y1, `0 + ξ1 − `lo} in the first stage and min{y2(ξ1), `0 + ξ1 + ξ2 − llo − y1} in the second
stage. This means that the original profits p1y1 and p2y2(ξ1) at the two stages have to be reduced
by the amounts p1

(
y1 − `0 − ξ1 + `lo

)
+

and p2
(
y2(ξ1)− `0 − ξ1 − ξ2 + `lo + y1

)
+

, respectively,
where the lower index ’+’ as usual represents the component-wise maximum of the given expression
and zero. In this way, the original lower level constraints in (5) have been removed and compensated
for by appropriate penalty terms in the objective.

Next, suppose that `up in (5) represents some upper limit of the reservoir which is considerably lower
than the physical one and serves the purpose of keeping a flood reserve. Then we may neither be able
to satisfy this upper limit almost surely (see above) nor to remove it in exchange for an appropriate
penalty. In such cases it is reasonable to impose a probabilistic constraint instead:

P (`0 + ξ1 − y1 ≤ `up, `0 + ξ1 + ξ2 − y1 − y2(ξ1) ≤ `up) ≥ p,

where p ∈ (0, 1) is a specified probability level. Hence, the release policies y1, y2(ξ1) are defined to
be feasible if the indicated set of random inequalities is satisfied at least with probability p. Observe
that p = 1 would yield the almost sure constraints again, hence choosing p close to but smaller than
one, offers us the possibility of finding a feasible release policy while keeping the soft upper level
constraint in a very robust sense.

Example 2.2 Taking into account all three kinds of hard and soft constraints in the (random) hydro
reservoir model (5), one ends up with the following well-defined optimization problem:

minimize
−E(p1y1 + p2y2(ξ1))
+E(p1(y1 − `0 − ξ1 + `lo)+ + p2(y2(ξ1)− `0 − ξ1 − ξ2 + y1 + `lo)+)

(7)

subject to

P
(

`0 + ξ1 − y1 ≤ lup

`0 + ξ1 + ξ2 − y1 − y2(ξ1) ≤ `up

)
≥ p

ylo ≤ y1 ≤ yup

ylo ≤ y2(ξ1) ≤ yup

}
P-almost surely.

Here, the group of soft lower level constraints has disappeared and entered the objective as a second
penalization term, the group of soft upper level constraints (for which no penalization costs are avail-
able) has turned into a probabilistic constraint and the group of hard box constraints is formulated in
the almost sure sense.

Applying this strategy to the general random constraints (6), we are led to partition the data matrices
and vectors for t = 1, . . . , T , and τ = 1, . . . , t, as

At,τ =
(
A

(1)
t,τ , A

(2)
t,τ , A

(3)
t,τ

)
, Bt,τ =

(
B

(1)
t,τ , B

(2)
t,τ , B

(3)
t,τ

)
, bt =

(
b
(1)
t , b

(2)
t , b

(3)
t

)
according to penalized soft constraints (upper index (1)), probabilistic soft constraints (upper index
(2)) and almost sure hard constraints (upper index (3)). Accordingly, (6) turns into the well-defined
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optimization problem

minimize (8)
T∑
t=1

E
{
〈ht, yt (ξ1:t−1)〉+

〈
Pt,
(

t∑
τ=1

A
(1)
t,τ yτ (ξ1:τ−1) +

t∑
τ=1

B
(1)
t,τ ξτ − b(1)t

)
+

〉}
subject to

P
(

t∑
τ=1

A
(2)
t,τ yτ (ξ1:τ−1) +

t∑
τ=1

B
(2)
t,τ ξτ ≤ b

(2)
t , t = 1, . . . , T

)
≥ p

t∑
τ=1

A
(3)
t,τ yτ (ξ1:τ−1) +

t∑
τ=1

B
(3)
t,τ ξτ ≤ b

(3)
t , t = 1, . . . , T, P-almost surely.

Here, the Pt ≥ 0 refer to a cost vectors penalizing the violation of soft constraints with upper index
(1).

2.2 Projection onto hard constraints of wait-and-see type

We will refer in (6) to wait-and-see constraints if Bt,t = 0 for all t = 1, . . . , T , and to here-and-now
constraints otherwise. The distinction is made according to whether in the constraint of any stage t
there is unobserved randomness ξt left or not. For example, in (5), the first two inequalities (level con-
straints) are here-and-now whereas the last two (operational limits) are wait-and-see. As mentioned
earlier, the almost sure constraints in (8) don’t have a good chance to be ever satisfied if B(3)

T,T 6= 0
and the support of the random distribution is unbounded. We’ll get back to such here-and-now con-
straints for bounded support of the random distribution in Section 4.5. First, let us deal with the case
where all hard constraints are of wait-and-see type as in (7). In this case, owing to B(3)

t,t = 0 for all
t = 1, . . . , T , the constraint set of (8) can be written as

M1 :=
{

(yt (ξ1:t−1))t=1,...,T | (9)

P

(
t∑

τ=1

A
(2)
t,τ yτ (ξ1:τ−1) +

t∑
τ=1

B
(2)
t,τ ξτ ≤ b

(2)
t , t = 1, . . . , T

)
≥ p

t∑
τ=1

A
(3)
t,τ yτ (ξ1:τ−1) +

t−1∑
τ=1

B
(3)
t,τ ξτ ≤ b

(3)
t , t = 1, . . . , T, P-almost surely

}
.

In the context of numerical solution approaches, one will usually not work in the infinite-dimensional
setting of all Borel measurable policies but rather with a finite dimensional approximation which may
be defined by some proper subsetK of policies. Later in this paper we will deal with the class of linear
decision rules (see Section 3.2). The feasible set of (8) will then become the intersection M1 ∩ K
rather than just M1. This intersection may turn out to be very small or even empty thus leading to a
poor approximation of the infinite dimensional problem (8). If, for instance one of the hard constraints
is given as y2(ξ1) ∈ [1, 2] (P-almost surely) and if, moreover, the class of policies is

K := {(y1, y2(ξ1)|∃a ∈ R : y2(ξ1) = aξ1},
then, clearly, M1 ∩ K = ∅. One possibility to avoid this kind of problem is to operate with projections
of policies onto the feasible domain of hard constraints.

Given a closed convex subset X of a finite dimensional space, we denote the uniquely defined pro-
jection onto this set by πX . For t = 1, . . . , T , we introduce the multifunctions

Xt (z1:t−1, ξ1:t−1) :=

{
y|A(3)

t,t y(ξ1:t−1) ≤ b
(3)
t −

t−1∑
τ=1

B
(3)
t,τ ξτ −

t−1∑
τ=1

A
(3)
t,τ zτ (ξ1:τ−1)

}
. (10)
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Here, we adopt the previous notation z1:t−1 := (z1, . . . , zt−1) from ξ. By Π we denote the operator
which maps a policy y := (yt (ξ1:t−1))t=1,...,T to a new policy z := Π(y) defined iteratively by

zt (ξ1:t−1) := πXt(z1:t−1,ξ1:t−1) (yt (ξ1:t−1)) ∀ξ, ∀t = 1, . . . , T, (11)

starting from z1 := πX1 (y1). For example, for t = 1, 2, 3, . . . one gets successively that

z1 : = πX1 (y1) ,

z2 (ξ1) : = πX2(z1,ξ1) (y2 (ξ1)) , ∀ξ1,
z3 (ξ1, ξ2) : = πX3(z1,z2(ξ1),ξ1,ξ2) (y3 (ξ1, ξ2)) , ∀ξ1 ∀ξ2,

so that Π(y) is correctly defined and by (10) satisfies the hard (almost sure) constraints of (8). (11)
amounts to a scenario-wise projection onto the polyhedra (10) which can be carried out numerically
by solving a convex quadratic program subject to linear constraints. In the special case of rectangular
sets [ylo, yup], which can be modeled as a hard constraint in (9) by putting for t = 1, . . . , T and
τ = 1, . . . , t− 1:

A
(3)
t,t := (I,−I)T , b

(3)
t :=

(
yupt
−ylot

)
, A

(3)
t,τ := 0, B

(3)
t,τ := 0, (12)

an explicit formula can be exploited: projection of a policy then just means cutting it off at the given
lower and upper limits. For instance, in the context of the hard constraints in (7), one has that

Π(y) = Π(y1, y2 (·)) =
(
max{ylo,min{y1, yup}},max{ylo,min{y2 (·) , yup}}

)
. (13)

As mentioned above, projection via Π is a way to enforce the hard constraints. This offers several
alternatives to the above-mentioned direct intersection of feasible policies from M1 with a given (typi-
cally finite-dimensional) subclassK. One option would consist in working from the very beginning with
projected policies so that the feasible set would become M1 ∩ Π(K) rather than M1 ∩ K. Indeed,
we shall see in Lemma 2.3 that the intersection with the original infinite-dimensional feasible set may
be substantially larger by doing so (in particular it would be no more empty in the example discussed
before). A second option would consist in relaxing the hard constraints to probabilistic constraints sim-
ilar to the ones given from the beginning and projecting them afterwards onto the set defined by hard
constraints. We formalize this idea by introducing the alternative (infinite-dimensional) constraint set

M2 :=
{

(yt (ξ1:t−1))t=1,...,T | (14)

P


t∑

τ=1

A
(2)
t,τ yτ (ξ1:τ−1) +

t∑
τ=1

B
(2)
t,τ ξτ ≤ b

(2)
t

t∑
τ=1

A
(3)
t,τ yτ (ξ1:τ−1) +

t−1∑
τ=1

B
(3)
t,τ ξτ ≤ b

(3)
t

 t = 1, . . . , T

 ≥ p
}
.

We shall see in Lemma 2.3 that the projection of M2 onto the hard constraints yields the set M1, so
there is no difference in the solution of (8) in the original infinite-dimensional setting. When consider-
ing intersections with a subclass K, however, a significant advantage over working with M1 may be
observed.

2.3 Approximating the original problem by means of subclasses of decision
rules

The following result clarifies the relations between the feasible sets M1, M2 introduced above and
their intersection with (projections of) subclasses of decision rules:
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Lemma 2.3 If K is an arbitrary subset of Borel measurable policies (yt (ξ1:t−1))t=1,...,T , then the
following chain of inclusions holds true:

M1 ∩ K ⊆ Π(M2 ∩ K) ⊆M1 ∩ Π(K) ⊆M1.

In particular, by settingK equal to the space of all Borel measurable policies, we derive that Π(M2) =
M1.

Proof. Let z ∈ M1 ∩ K. Then, the probabilistic constraint for the first and the almost sure constraints
for the other inequality system in (9), respectively, guarantee that the joint probabilistic constraint in
(14) is satisfied, hence z ∈ M2 ∩ K. With z fulfilling the almost sure constraints in (9), we have that
z = Π(z), whence z ∈ Π(M2 ∩ K). This proves the first inclusion in the above chain. Next, as for
the second inequality, let z ∈ Π(M2 ∩ K), hence z = Π(y) for some y ∈ M2 ∩ K. In particular,
z ∈ Π(K) and it remains to show that z ∈ M1. As an image of the mapping Π, z satisfies the
almost sure constraints of (9). By y ∈ M2 and (14), there exists a measurable set S ⊆ Ω such that
P (S) ≥ p and

∑
τ=1

ctA
(2)
t,τ yτ (ξ1:τ−1 (ω)) +

t∑
τ=1

B
(2)
t,τ ξτ (ω) ≤ b

(2)
t

t∑
τ=1

A
(3)
t,τ yτ (ξ1:τ−1 (ω)) +

t−1∑
τ=1

B
(3)
t,τ ξτ (ω) ≤ b

(3)
t

are satisfied for all t = 1, . . . , T and all ω ∈ S. By (11), the second inequality system implies
(successively for t from 1 to T ) that

yt (ξ1:t−1 (ω)) ∈ Xt (z1:t−1, ξ1:t−1 (ω)) ∀t = 1, . . . , T, ∀ω ∈ S.

Hence, again by (11), (zt (ξ1:t−1) (ω))t=1,...,T = (yt (ξ1:t−1) (ω))t=1,...,T for all ω ∈ S. Therefore,
the first inequality system above can be written as

t∑
τ=1

A
(2)
t,τ zτ (ξ1:τ−1 (ω)) +

t∑
τ=1

B
(2)
t,τ ξτ (ω) ≤ b

(2)
t ∀t = 1, . . . , T, ∀ω ∈ S.

Since P (S) ≥ p it follows that z satisfies the probabilistic constraint in (9). Summarizing we have
shown that also z ∈M1, whence the desired inclusion follows. The last inclusion is trivial. �

The previous Lemma suggests to consider the following 4 optimization problems each of them being
some relaxation of our original optimization problem (8):

min{h(y)|y ∈M1 ∩ K}, (15)

min{h(z)|z ∈ Π(arg min{h(y)|y ∈M2 ∩ K})}, (16)

min{h(y)|y ∈ Π(M2 ∩ K)}, (17)

min{h(y)|y ∈M1 ∩ Π(K)}. (18)

Here h refers to the objective function of (8) and K is a given subclass of decision policies. The
meaning of (15), (17) and (18) is clear and relates to the feasible sets considered in Lemma 2.3. In
(16) we determine first the solution(s) of the inner optimization problem min{h(y)|y ∈ M2 ∩ K}
and then project them via Π. If this inner optimization problem has multiple solutions, then we choose
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those of their projections under Π yielding the smallest value of the objective. We observe that (17)
has the same optimal value as the problem

min{h(Π(y))|y ∈M2 ∩ K}, (19)

where the projection is shifted from the constraints to the objective, and that y is a solution of (19) if
and only if Π(y) is a solution of (17). Hence, (17) and (19) are equivalent and it may be a matter of
convenience which of the two forms is preferred. The potential advantage of (16) say over (17) and
(18) is that projections don’t have to be dealt with in the constraints or in the objective directly but can
be carried out after solving the problem.

Lemma 2.4 Denote by ϕ1, ϕ2, ϕ3, ϕ4, respectively, the optimal values of problems (15)-(18) and by
ϕ the optimal value of the originally given problem (8). Then, any solution of problems (15)-(18) is
feasible for problem (8) and it holds that

ϕ1, ϕ2 ≥ ϕ3 ≥ ϕ4 ≥ ϕ.

Proof. From Lemma 2.3 we see that any feasible point and, hence, any solution of (15), (17) and (18)
is feasible for (8). From the inclusions of Lemma 2.3 it follows that ϕ1 ≥ ϕ3 ≥ ϕ4 ≥ ϕ. Now, let z∗

be a solution of (16). Then, there exists some y∗ ∈M2 ∩K such that z∗ = Π (y∗) and y∗ solves the
problem min{h(y)|y ∈ M2 ∩ K}. In particular, z∗ ∈ Π (M2 ∩ K) is feasible for (17). This implies
first z∗ ∈ M1 by Lemma 2.3 and, hence, the asserted feasibility of z∗ for (8). Second, it implies the
desired remaining relation ϕ2 = h(z∗) ≥ ϕ3. �

Lemma 2.4 can be interpreted as follows: Problem (15) reflects the pure transition to a subclass K of
policies in the originally given problem (8). The resulting loss in optimal value equals ϕ1 − ϕ ≥ 0. In
contrast, using projections onto hard constraints in the one or other way as in (17) and (18) may lead
to smaller losses in the optimal values. Of course, this advantage of working with projections requires
that the computational gain by passing to an interesting subclass K is not destroyed by the projection
procedure. This is why in Section 3.2 we shall introduce the class of linear decision rules as a suitable
one harmonizing well to a certain degree with projections onto polyhedral sets. The following example
illustrates Lemma 2.4:

Example 2.5 Consider the following problem with policies y1, y2(ξ1) as variables:

min y1 subject to

P(ξ1 ≤ y1, ξ2 ≤ y2(ξ1)) ≥ p

y1, y2(ξ1) ∈ [0, 1], P− almost surely.

We assume that the random vector ξ = (ξ1, ξ2) follows a uniform distribution over the set Θ =
([−1, 1]× [0, 1]) ∪ ([0, 1]× [0,−1]) and that p = 1/3. As a subclass of policies, we consider
(purely) linear second stage decisions:

K := {(y1, y2(ξ1)) |∃a ≥ −1 : y2(ξ1) = aξ1}.

� Solution of the original problem (8):

We claim that the optimal value ϕ of the original problem equals 0. Indeed, it cannot be smaller
than 0 due to the constraint y1 ≥ 0. On the other hand, y1 := 0 and y2(ξ1) := 1 for all ξ1

10



represents a feasible policy because it clearly satisfies the almost sure constraints and the set
of ξ satisfying ξ1 ≤ 0 and ξ2 ≤ 1 covers one third of the support of ξ. Hence the probabilistic
constraint is satisfied too. The objective value associated with this feasible policy equals y1 = 0,
so ϕ = 0 as asserted.

� Solution of problem (15):

The feasible set here is M1 ∩ K and a feasible second stage policy y2(ξ1) = aξ1 has to be
trivial (a = 0) in order to satisfy the almost sure constraint 0 ≤ y2(ξ1) ≤ 1. Then, the only
choice for y1 such that (y1, 0) satisfies the probabilistic constraint is y1 := 1 (only then, the set
of ξ satisfying ξ1 ≤ y1 and ξ2 ≤ 0 covers one third of the support of ξ). Hence the feasible set
in this problem reduces to a singleton and its optimal value equals to the objective value of this
singleton: ϕ1 = y1 = 1.

� Solution of problems (16) and (17):

As stated above, (17) is equivalent with (19). In our example, h is the projection onto the first
component, hence we seek to minimize (Π(y))1 over the constraint set

M2 ∩ K = {(y1, aξ1) | a ≥ −1,P(y1, aξ1 ∈ [0, 1], ξ1 ≤ y1, ξ2 ≤ aξ1) ≥ 1/3}
= {(y1, aξ1) | y1 ∈ [0, 1], a ≥ −1, ψ(y1, a) ≥ 1/3} (20)

where ψ(y1, a) := P((ξ1, ξ2) ∈ S(a, y1)) with

S(a, y1) := {(ξ1, ξ2) ∈ Θ | ξ1 ≤ y1, ξ2 ≤ aξ1, 0 ≤ aξ1 ≤ 1}

(see Figure 1). Note that in (20) we were allowed to extract the deterministic constraint y1 ∈
[0, 1] from the probabilistic constraint.

As (Π(y))1 is the projection of y1 onto the first stage almost sure constraint set X1 = [0, 1]
(see (11) and (10)), we get that (Π(y))1 = y1. Consequently, according to (19), we want to
minimize y1 for all policies (y1, aξ1) belonging to (20). We consider three cases:

(i) For −1 ≤ a ≤ 0 (see top left in Figure 1), we have ψ(y1, a) = −a/6 < 1/3.

(ii) For 0 < a ≤ 1 (see bottom left in Figure 1), we have ψ(y1, a) = 1
3
(y1 + ay21/2).

The smallest value of y1 satisfying ψ(y1, a) ≥ 1/3 is obtained taking a = 1 and y1 =
−1 +

√
3 > 2/3.

(iii) For a > 1 (see bottom right in Figure 1), we get

ψ(y1, a) =

{
1
3
(y1 + ay21/2) if y1 ≤ 1/a,
1
2a

otherwise.

In particular, ψ(2
3
, 3
2
) = 1

3
. We distinguish the two subcases:

(1) a > 3/2: if y1 > 1/a then ψ(y1, a) = 1
2a
< 1

3
and if 0 ≤ y1 ≤ 1

a
then ψ(y1, a) ≤

ψ( 1
a
, a) = 1

2a
< 1

3
.

(2) 1 ≤ a ≤ 3/2: If 0 ≤ y1 <
2
3

then y1 ≤ 1/a and, hence,

ψ(y1, a) <
1

3

(
2

3
+

3

2

4

2 · 9

)
=

1

3
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ξ1

ξ2

-1

-1

1

1

S(a, y1)

for −1 ≤ a ≤ 0 ξ2 = aξ1

y1 ξ1

ξ2

-1

-1

1

1

S̃(a, y1)

for −1 ≤ a ≤ 0 ξ2 = aξ1

y1

y2(ξ1)

ξ1

ξ2

-1

-1

1

1

ξ2 = aξ1

y1

S(a, y1)

S̃(a, y1)

for 0 < a ≤ 1

y2(ξ1) ξ1

ξ2

-1

-1

1

11/ay1

S(a, y1)

for a > 1

S̃(a, y1)

ξ2 = aξ1

y2(ξ1)

Figure 1: Representations of S(a, y1) and S̃(a, y1): top figures for −1 ≤ a ≤ 0, bottom
left for 0 < a ≤ 1, and bottom right for a > 1.

3 Linear decision rules and Gaussian distribution

Example 2.3 has illustrated the different approximating optimization problems with re-
spect to the given one (5). Of course, it would be desirable to use approximations whose
optimal values are closest to the given one (e.g., problem (14)). On the other hand, these
may be harder to solve. We shall demonstrate in this section which shape the optimization
problems take for the special subclass of policies induced by linear decision rules and for
the case of multivariate Gaussian distributions.

10

Figure 1: Representations of S(a, y1) and S̃(a, y1): top figures for −1 ≤ a ≤ 0, bottom left for
0 < a ≤ 1, and bottom right for a > 1.

Summarizing, the best value of the objective at an admissible solution of (19) equals 2
3

and
is realized uniquely by the optimal policy

(
2
3
, 3
2
ξ1
)
. The latter is therefore the unique optimal

solution of (19). According to our observation above, its projection

Π

(
2

3
,
3

2
ξ1

)
=

(
2

3
,max{0,min{3

2
ξ1, 1}}

)
(21)

onto the almost sure constraints in our example is an optimal solution of (17). The associated
function value equals h

(
2
3
, 3
2
ξ1
)

= 2/3 which therefore is the optimal value of (17). It follows
that ϕ3 = 2/3.

On the other hand, as we have already observed that h(y) = h(Π(y)) = y1 due to 0 ≤ y1 ≤
1, it follows that the unique optimal solution

(
2
3
, 3
2
ξ1
)

of (19) yields the unique optimal solution
to the problem

min{h(y)|y ∈M2 ∩ K}
at the same time. Hence, its projection onto the almost sure constraints is the already identified
solution (21) of problem (17) implying that the optimal value of problem (16) is the same as that
of (17): ϕ2 = ϕ3 = 2/3.

� Solution of problem (18): By virtue of (13), the policies belonging to the set Π(K) have the
form (y1,max{0,min{aξ1, 1}}) for some y1 ∈ [0, 1] and a ≥ −1 (see Figure 1). Since these
policies already satisfy the almost sure constraints, all one has to add in order to get a policy
feasible for (18) is the satisfaction of the probabilistic constraint. Observe that

M1 ∩ Π(K) = {(y1,max{0,min{aξ1, 1}}) | y1 ∈ [0, 1], a ≥ −1, ψ̃(y1, a) ≥ 1/3}
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where ψ̃(y1, a) := P((ξ1, ξ2) ∈ S̃(a, y1)) with

S̃(a, y1) = {(ξ1, ξ2) ∈ Θ | ξ1 ≤ y1, ξ2 ≤ max(0,min(aξ1, 1))}

(see Figure 1). For −1 ≤ a ≤ 0 (see Figure 1), we have

ψ̃(y1, a) =
1

3
(y1 −

a

2
) < ψ̃(1/2,−1) =

1

3
∀y1 < 1/2.

For 0 < a ≤ 1 (see bottom left in Figure 1), we have ψ̃(y1, a) = 1
3
(y1 + ay21/2). The smallest

value of y1 satisfying ψ̃(y1, a) ≥ 1/3 is obtained taking a = 1 and y1 = −1 +
√

3 > 1/2.
Finally, for a > 1 (see bottom right in Figure 1), we assume that y1 ≤ 1/2. Then,

y1 > 1/a =⇒ ψ̃(y1, a) =
1

3
(2y1 −

1

2a
) <

y1
3
≤ 1

3

y1 ≤ 1/a =⇒ ψ̃(y1, a) =
1

3
(y1 +

ay21
2

) ≤ 1

3
(
1

2
+

1

2a
) <

1

3
.

This means that there is no feasible policy with y1 ≤ 1/2 and a > 1. Consequently, the optimal
value of (18) equals ϕ4 = 1/2 and is realized by the policy (1/2,max{0,min{−ξ1, 1}})
which is the projection of the decision rule (1/2,−ξ1) ∈ K onto the hard box constraints.

3 Probabilistic Model and Linear decision rules

Example 2.5 has illustrated the different approximating optimization problems with respect to the given
one (8). In order to formulate these ideas in a practically meaningful framework, one has to specify the
probabilistic model for the random vector ξ and a suitable subclassK of decision rules in Lemma 2.3.

3.1 Probabilistic model

We introduce in this section the class of stochastic processes (ξt) we consider. Each component
ξt(m) of ξt follows a linear model of the form

pt(m)∑
k=0

αt,k(m)ξt−k(m) = µt(m) +

qt(m)∑
k=0

βt,k(m)εt−k(m), m = 1, . . . ,M, (22)

where µt is the tendency for period t and lags pt(m), qt(m) are nonnegative and depend on time.
We assume that for every t, the coefficients αt,0(m), αt,pt(m)(m), and βt,qt(m)(m) are nonzero.

Finally, the noises are supposed to obey centered Gaussian laws εt ∼ N (0,Σt), pairwise indepen-
dent for different time steps. We recall the notation N (µ,Σ) for referring to a multivariate Gaussian
distribution with mean µ and covariance matrix Σ. Hence, ε := (ε1, . . . , εT ) ∼ N (0,Σ), where Σ is
a block-diagonal covariance matrix whose blocks are the covariance matrices Σt of the components
εt.

Remark 3.1 We assume that the parameters of model (22) are known. In its full generality, model
(22) is not identifiable. Additional assumptions are needed to identify lags pt(m), qt(m) and calibrate
the model parameters. As special cases, the identifiable SARIMA (with constant lags) and Periodic
Autoregressive (PAR, with periodic time dependent lags) models can be considered.
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Using iteratively model equation (22), for each instant t = 1, . . . , T , we can decompose ξt(m) as a
function of noises ε1, . . . , εt and of past observations of the process (ξt) and of the noises (observa-
tions for instants 0,−1,−2, . . .). More precisely, for every t = 1, . . . , T and for every component m,
we have for ξt(m) a decomposition of the form

ξt(m) = ct(m) +

rt(m)∑
k=1

γt,k(m)ξ1−k(m) +

st(m)∑
k=1

δt,k(m)ε1−k(m) +
t∑

k=1

θt,k(m)εk(m) (23)

for some lags rt(m) and st(m) that represent the minimal number of past observations of respectively
the stochastic processes (ξt) and (εt) that are necessary to decompose ξt(m) over its past. This de-
composition will be used in the next sections. In this decomposition, the first two sums gather the past
realizations of process (ξt) and of the noises. Lemma A.1 stated and proved in the Appendix, provides
the formulae to compute iteratively the coefficients appearing in the decompositions of ξ1(m), ξ2(m),
. . . , ξT (m),m = 1, . . . ,M , of the form (23) above. The computation of these coefficients is nec-
essary when one is interested in solving the optimization problems we consider in the next sections
when (ξt) is of the form (22). A similar decomposition for less general models was given in [18], [19].

It is convenient to write (23) in the compact form

ξt = µ̃t + Θtε (t = 1, . . . , T ), (24)

where for each t = 1, . . . , T ,

� µ̃t is a constant vector in RM with component m given by

µ̃t(m) = ct(m) +

rt(m)∑
k=1

γt,k(m)ξ1−k(m) +

st(m)∑
k=1

δt,k(m)ε1−k(m),

� Θt is the M×MT matrix

Θt =
(
diag(θt,1(1), . . . , θt,1(M)), . . . , diag(θt,t(1), . . . , θt,t(M)), 0M×M(T−t)

)
where the coefficients θt,j(m) are given in Lemma A.1.

3.2 Linear decision rules

As mentioned in Section 2.2 the numerical solution of problem (8) requires to reduce the space of
all Borel measurable decision policies to some convenient finite-dimensional subspace. A simple and
widely used way to do so consists in considering so-called linear decision rules as policies which are
defined as the set

K := {(yt (ξ1:t−1))t=1,...,T | ∃Ft, ft : yt (ξ1:t−1) = Ftξ1:t−1 + ft (t = 1, . . . , T )}, (25)

with matrices Ft and vectors ft of appropriate size. Since the first stage decision y1 is deterministic,
we convene about fixing F1 := 0.
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3.2.1 The random inequality system under linear decision rules

Under linear decision rules and the probabilistic model (24), our generic random inequality system

t∑
τ=1

At,τyτ (ξ1:τ−1) +
t∑

τ=1

Bt,τξτ ≤ bt t = 1, . . . , T (26)

turns into (for t = 1, . . . , T )(
t∑

τ=1

At,τFτΘ1:τ−1 +Bt,τΘτ

)
︸ ︷︷ ︸

Ht(x)

ε ≤ bt −
t∑

τ=1

Bt,τ µ̃τ −
t∑

τ=1

At,τfτ −
t∑

τ=1

At,τFτ µ̃1:τ−1︸ ︷︷ ︸
ht(x)

. (27)

In this system, ε is the transformed random vector, whereas now x := (Ft, ft)t=1,...T represents
a finite-dimensional decision vector approximating the original decision policies (yt (ξ1:t−1))t=1,...,T .
With the notation introduced below the corresponding expressions, we may compactly rewrite (27) in
the form

Ht(x)ε ≤ ht(x) (t = 1, . . . , T ), (28)

where the Ht, ht are affine linear mappings of x. When relating these mappings not to the generic
system (26) but to the concrete systems of hard and soft constraints in (8) labeled by upper indices
(1), (2), (3), we shall use the corresponding upper indices for the mappings Ht and ht as well.

We observe that, thanks to affine linearity ofHt, ht, the set of x satisfying (28) is convex for each fixed
ε.

3.2.2 The objective function under linear decision rules

From (24) and ε having a centered distribution, it follows that the expectation of ξt equals µ̃t. Therefore,
the objective of our problem (8) takes under linear decision rules the form

T∑
t=1

〈ht, Ftµ̃1:t−1 + ft〉︸ ︷︷ ︸
J1(x)

+
T∑
t=1

〈
Pt,E

(
t∑

τ=1

A
(1)
t,τ yτ (ξ1:τ−1) +

t∑
τ=1

B
(1)
t,τ ξτ − b(1)t

)
+

〉

where in the definition of J1 we used once more the convention x := (Ft, ft)t=1,...T . Now, applying
(28) with upper index (1) referring to the inequality subsystem penalized in the objective, we can rewrite
the objective of (8) under linear decision rules as J (x) := J1(x) + J2(x), where

J2(x) :=
T∑
t=1

〈
Pt,E

(
H

(1)
t (x)ε− h(1)t (x)

)
+

〉

Lemma 3.2 J is convex.

Proof. Since J1 is linear, it suffices to check convexity of J2. As mentioned earlier, the mappings
H

(1)
t , h

(1)
t are affine linear, whence the mappingH(1)

t (x)ε−h(1)t (x) is affine linear in x. In particular,
each component of this mapping is convex in x which remains true upon passing to its maximum with
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zero. It follows that the components of E
(
H

(1)
t (x)ε− h(1)t (x)

)
+

(depending only on x) are convex.

Now, the result follows from Pt ≥ 0. �

For implementation purposes, it is useful to have an analytic expression of the objective function. For
this purpose, we need the following Lemma:

Lemma 3.3 LetX be a one-dimensional Gaussian random variable distributed according toN (m,σ2)
and let a, b ∈ R̄ with a ≤ b. Then, with Φ referring to the one-dimensional standard normal distribution
function, it holds that

E[max{a,min{X, b}}] =
σ√
2π

(
exp

(
−(a−m)2

2σ2

)
− exp

(
−(b−m)2

2σ2

))
+

(a−m)Φ(
a−m
σ

) + (m− b)Φ(
b−m
σ

) + b.

Proof. With fX(x) = 1√
2πσ

exp
(
− (x−m)2

2σ2

)
being the density of X and with Φ̃ being the associated

cumulative distribution function, we have

E[max{a,min{X, b}}] =∫ a

−∞
afX(x)dx+

∫ b

a

xfX(x)dx+

∫ ∞
b

bfX(x)dx =

aΦ̃(a) +

∫ b

a

(x−m)fX(x)dx+m

∫ b

a

fX(x)dx+ b(1− Φ̃(b)) =

aΦ̃(a) +

[ −σ√
2π

exp

(
−(x−m)2

2σ2

)]b
a

+m(Φ̃(b)− Φ̃(a)) + b(1− Φ̃(b)) =

σ√
2π

(
exp

(
−(a−m)2

2σ2

)
− exp

(
−(b−m)2

2σ2

))
+ (a−m)Φ̃(a) + (m− b)Φ̃(b) + b.

On the other hand, since σ−1(X −m) ∼ N (0, 1), we have that, for all z,

Φ̃(z) = P(X ≤ z) = P(σ−1(X −m) ≤ σ−1(z −m)) = Φ(σ−1(z −m))

and the result follows. �

The only non-explicit part in our objective function J (x) is the vector of expectations in the definition
of J2(x). Its ith component is given by

E[max(X(x), 0)] = E[max{0,min{X(x),+∞}]; X(x) :=
(
H

(1)
t (x)ε− h(1)t (x)

)
i
.

According to the transformation rules of Gaussian distributions, we know that

X(x) ∼ N (m,σ2); m := −(h
(1)
t (x))i; σ :=

√(
H

(1)
t (x)Σ[H

(1)
t (x)]T

)
ii
,

where Σ is the block-diagonal covariance matrix of ε (see Section 3). With these data, Lemma 3.3 can
be employed (with a := 0, b := +∞) to make the objective J (x) fully explicit in terms of the initial
data of the problem.
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3.2.3 Projection of linear decision rules onto hard constraints

The solution of problems (16), (17), (18), (19) is intimately related with the ability to either explicitly or
numerically compute projections Π(y) of policies y ∈ K according to (11). In the case of linear deci-
sion rules introduced in (25), the projected policy z := Π(y) is obtained for y = (Ftξ1:t−1+ft)t=1,...,T

as the successive (unique) solution of (scenario-dependent) quadratic optimization problems:

zt(ξ1:t−1) =


argmin

u
‖Ftξ1:t−1 + ft − u‖2

A
(3)
t,t u ≤ b

(3)
t −

t−1∑
τ=1

B
(3)
t,τ ξτ −

t−1∑
τ=1

A
(3)
t,τ zτ (ξ1:τ−1),

(29)

∀ξ, ∀t = 1, . . . , T.

Here, starting from t = 1, previously obtained solutions for zτ are plugged in on the right-hand side of
(29). Hence, for instance the first two components of z are obtained as

z1 = argmin
u

{
‖f1 − u‖2|A(3)

1,1u ≤ b
(3)
1

}
z2(ξ1) = argmin

u

{
‖F2ξ1 + f2 − u‖2|A(3)

2,2u ≤ b
(3)
2 −B(3)

2,1ξ1 − A(3)
2,1z1

}
∀ξ1.

In the special case of box constraints

yt(ξ1:t−1) ∈ [y
t
, yt] P-almost surely t = 1, . . . , T, (30)

an explicit formula for the projection of y = (Ftξ1:t−1 + ft)t=1,...,T can be provided:

Π(y) =
(

max{(y
t
)i,min {(Ftξ1:t−1 + ft)i, (yt)i}}

)
t=1,...,T ; i=1,...,nt

. (31)

3.2.4 Probabilistic constraints under Linear Decision Rules and Gaussian distribution

Under the assumption of linear decision rules (25), the originally dynamic probabilistic constraint

P

(
t∑

τ=1

At,τyτ (ξ1:τ−1) +
t∑

τ=1

Bt,τξτ ≤ bt t = 1, . . . , T

)
≥ p

associated with (26) and occuring in problems (8) turns into a conventional static probabilistic con-
straint

P (Ht(x)ε ≤ ht(x) (t = 1, . . . , T )) ≥ p, (32)

with finite-dimensional decisions x := (Ft, ft)t=1,...T . (32) represents a joint linear probabilistic con-
straint under Gaussian distribution. This class has been intensively studied with respect to its analytical
properties and numerical solution approaches, see, e.g., [38, 31]. For an algorithmic treatment of such
probabilistic constraints within the framework of nonlinear optimization it is important to have required
information about the probability function

ϕ(x) := P (Ht(x)ε ≤ ht(x) (t = 1, . . . , T ))

defining the inequality constraint ϕ(x) ≥ p in (32). In particular, procedures computing or, better,
approximating values and gradients of ϕ are needed. As shown in [42], both tasks can be realized si-
multaneously by reduction to the computation of multivariate Gaussian distribution functions. The latter
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can be quite efficiently done using Genz’ code as described in [15]. An alternative approach consists
in the use of the so-called spheric-radial decomposition of Gaussian random vectors [11, 37, 40]. An-
other important property for algorithmic purposes is convexity of the feasible set described by (32).
While this is well-known to be true in case of constant matrices Ht and mappings ht having concave
components [31, Theorem 10.2.1], the same does not hold true in general for (32), in particular not
for arbitrary probability levels p. Apart from special cases, such as the presence of one single random
inequality in the system [21, 43] or specially structured covariance matrices [30, 20], where convexity
for sufficiently large p could be guaranteed, no general result on this issue seems to be available so
far.

4 Approximating optimization problems under Linear Decision
Rules and Gaussian and truncated Gaussian distribution

4.1 First optimization problem

The first optimization problem we address is (15), i.e., the original problem (8) but with the feasible
set intersected with the class of linear decision rules (25). Making recourse to the compact notation
introduced in Section 3.2, Problem (15) writes

min{J (x) | P(H
(2)
t (x)ε ≤ h

(2)
t (x) (t = 1, . . . , T )) ≥ p, (33)

H
(3)
t (x)ε ≤ h

(3)
t (x) (t = 1, . . . , T ), P-almost surely}.

In the definition of h(3)t according to (27) we have to recall that B(3)
t,t = 0 for all t = 1, . . . , T

according to our wait-and-see perspective on hard constraints (see Section 2.2). (33) is a nonlinear
optimization problem with a joint probabilistic and a (linear) semi-infinite constraint (P-almost surely
could be replaced by ’for P-almost all ε ∈ Ξ’, where Ξ is the support of the random vector ε).

Proposition 4.1 The hard constraint in problem (33) can be explicitly represented in terms of the
original data (see (27)) as the system of linear (in-)equalities for t = 1, . . . , T :

t∑
τ=1

(
A

(3)
t,τFτΘ1:τ−1 +B

(3)
t,τ Θτ

)
= 0,

t−1∑
τ=1

B
(3)
t,τ µ̃τ +

t∑
τ=1

A
(3)
t,τ fτ +

t∑
τ=1

A
(3)
t,τFτ µ̃1:τ−1 ≤ b

(3)
t .

Proof. As mentioned above, the hard constraint in problem (33) can be replaced by

H
(3)
t (x)ε ≤ h

(3)
t (x) for P-almost all ε ∈ Ξ (t = 1, . . . , T ). (34)

Since ε follows a mutivariate Gaussian distribution, its support is the whole space. As a consequence,
some x can be feasible for (34) only ifH(3)

t (x) = 0 which in turn implies that h(3)t (x) ≥ 0. Conversely,
any x satisfying these two relations is feasible for (34). Thus, we have shown that (34) is equivalent
with the system H

(3)
t (x) = 0, h

(3)
t (x) ≥ 0. Now, (27) yields the assertion of the proposition. �

By virtue of Proposition 4.1, the hard constraints in (33) define a polyhedral constraint set for the
decision vector x. Recalling Lemma 3.2, (33) would be a convex optimization problem provided that
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the probabilistic constraint defines a convex feasible region. As discussed in Section 3.2.4, this can be
guaranteed, however, only in certain special cases. Moreover, the range of applicability of Proposition
4.1 is potentially small:

Corollary 4.2 Assume that all coefficients θt,k in (23) have all components different from zero. Then,
if the hard constraints in (33) represent simple box constraints, the only feasible linear decision rules
are static ones.

Proof. For box constraints y ∈ [ylo, yup], we are dealing with the data specified in (12). Accordingly,
the equation derived in Proposition 4.1 yields that

A
(3)
t,t FtΘ1:t−1 +B

(3)
t,t Θt = 0 t = 1, . . . , T.

Recalling that, by the assumed wait-and-see structure for the hard constraints, we have B(3)
t,t = 0 for

t = 1, . . . , T (see Section 2.2), and taking into account that A(3)
t,t = (I,−I)T , we derive in particular

the relations FtΘ1:t−1 = 0 for t = 1, . . . , T . Now, our assumption on coefficients θt,k ensures that
the matrices Θ1:t−1 are surjective. As a consequence, Ft = 0 for t = 1, . . . , T , which means that
the linear decision rules in (25) reduce to yt (ξ1:t−1) = ft for t = 1, . . . , T . In other words, one is
back to a static decision problem. �

In order to avoid the restrictive consequences following from the last corollary, one may pass from
Gaussian to truncated Gaussian distributions having a bounded support. This will be discussed in
Section 4.5.

4.2 Second optimization problem

The second optimization problem to be discussed is (16). We will focus our attention on the inner
optimization problem

min{h(y) | y ∈M2 ∩ K}. (35)

If this problem happens to have a unique solution, then its projection via Π onto the hard constraints
will be unique and thus will be a solution of the overall problem too. Otherwise, the outer optimization
problem in (16) just serves the purpose of selecting the best solution among projected solutions of the
inner problem possibly realizing different values of the objective function h. We will not address the
issue of possible non-uniqueness of (35) here.

By (14), and using once more the compact notation of Section 3.2 along with the definition (25) of
linear decision rules, problem (35) writes

min{J (x) | P(H
(2)
t (x)ε ≤ h

(2)
t (x), H

(3)
t (x)ε ≤ h

(3)
t (x) (t = 1, . . . , T )) ≥ p}. (36)

This problem has the same objective as (33) but the feasible set differs by the absence of hard con-
straints and the presence of an enlarged inequality system in the joint chance constraint. Once, a
solution x∗ of (36) has been determined, it is projected onto the hard constraints (either using an ex-
plicit formula if possible or by solving a quadratic optimization problem as described in Section 3.2.3)
in order to yield a decision policy Π(x∗) which is feasible for the original infinite-dimensional problem
(8).
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4.3 Third optimization problem

The third optimization problem we consider is (17) or its equivalent form (19). Observe first, that (17)
can be written

min{h(z)|z = Π(y), y ∈M2 ∩ K}.
The inclusion in the constraint set of this optimization problem is the same as in (35) and can thus be
formulated as the probabilistic constraint in (36) under our convention x := (Ft, ft)t=1,...T . Taking
into account formula (29) for the projection z = Π(y), we arrive at the following description for problem
(17):

min{h(z) | zt(ξ1:t−1) = argmin
u
{ϑt(x, u, ξ) | γt(u, ξ) ≤ 0 ∀ξ, ∀t = 1, . . . , T}, (37)

P(H
(2)
t (x)ε ≤ h

(2)
t (x), H

(3)
t (x)ε ≤ h

(3)
t (x) (t = 1, . . . , T )) ≥ p},

where

ϑt(x, u, ξ) := ‖Ftξ1:t−1 + ft − u‖2

γt(u, ξ) := A
(3)
t,t u+

t−1∑
τ=1

B
(3)
t,τ ξτ +

t−1∑
τ=1

A
(3)
t,τ zτ (ξ1:τ−1)− b(3)t

(recall that due to successive resolution of constraints in (29) the terms zτ (ξ1:τ−1) are known in step
t for τ = 1, . . . , t− 1). Formally, (37) represents a kind of bilevel problem in variables (x, z), where
the upper level variable x is subjected to a joint probabilistic constraint and the lower level variable z is
subjected to a continuum of lower level problems depending on x. As such, this optimization problem
appears to be very hard to solve. On the other hand, for given x satisfying the probabilistic constraint,
the solutions zt of the parametric lower level quadratic problem are piecewise linear in ξ1:t−1 with an
identifiable polyhedral decomposition of their domain. This would allow us to apply algorithms from
multiparametric quadratic programming (see [39]) in order to determine the zt.

The problem simplifies significantly if the hard constraints are simple box constraints (30) such that
the explicit formula (31) can be applied. In this case, one may directly pass to the equivalent problem
(19) which in our compact notation reads

minimize
T∑
t=1

E
{
〈ht, δt(x, ξ)〉+

〈
Pt,
(

t∑
τ=1

A
(1)
t,τ δτ (x, ξ) +

t∑
τ=1

B
(1)
t,τ ξτ − b(1)t

)
+

〉}
(38)

subject to

P(H
(2)
t (x)ε ≤ h

(2)
t (x), H

(3)
t (x)ε ≤ h

(3)
t (x) (t = 1, . . . , T )) ≥ p,

where x := (Ft, ft)t=1,...T and the components of δt(x, ξ) are defined as

(δt(x, ξ))i :=
(

max{(y
t
)i,min {(Ftξ1:t−1 + ft)i, (yt)i}}

)
i; t=1,...,T

. (39)

The first part of the expectation in the objective of this problem requires just to compute the expec-
tations E(δt(x, ξ))i which can be made fully explicit thanks to Lemma 3.3 upon putting there (see
(24))

a := (y
t
)i; b := (yt)i; m := (Ftµ̃1:t−1 + ft)i; σ :=

√(
FtΘ1:t−1ΣΘT

1:t−1F
T
t

)
ii
.
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Consequently, in the absence of penalty terms in the objective, the whole problem reduces to a stan-
dard optimization problem subject to joint linear probabilistic constraints with multivariate Gaussian
distribution. It may be difficult to obtain an analytic expression for the expectation of the penalty terms
applied to projected linear decision rules. In this case, more elementary techniques like Sample Aver-
age Approximation may be used to approximate these expectations numerically.

4.4 Fourth optimization problem

The last optimization problem we consider is (18). The difference with the previous optimization prob-
lems is that here decision variables are projections onto hard constraints from the very beginning.
Similarly to the previous optimization problem, (18) can be written

min{h(z)|z = Π(y), z ∈M1, y ∈ K}. (40)

Since the projection z = Π(y) already ensures the hard constraint in the inclusion z ∈ M1, it is
sufficient to impose the probabilistic constraint in (9) on z. Following the idea and the notation of (37)
in the previous optimization problem, one may reformulate (18) as

min{h(z) | zt(ξ1:t−1) = argmin
u
{ϑt(x, u, ξ) | γt(u, ξ) ≤ 0 ∀ξ, ∀t = 1, . . . , T}, (41)

P

(
t∑

τ=1

A
(2)
t,τ zτ (ξ1:τ−1) +

t∑
τ=1

B
(2)
t,τ ξτ ≤ b

(2)
t , t = 1, . . . , T

)
≥ p}.

Again, we are dealing with a bilevel problem in variables (x, z), where the lower level variable z
is subjected to a continuum of lower level problems depending on the upper level variable x. This
time, however, the probabilistic constraint does not operate on the upper but rather on the lower level
variable. Moreover, it involves only the system of soft constraints (labeled by the upper index ’(2)’).
Evidently, in solving (41) one is faced with the same difficulties as for problem (37).

As before, there is motivation to investigate the special case of box constraints (30). Since in this case
the projection Π(y) can be made explicit via (31), we may equivalently write (40)

min{h(Π(y)) | Π(y) ∈M1, y ∈ K}.

This problem has the same objective as problem (19) and, hence, can be made explicit exactly the
same way as described in the previous section for (38). The difference now comes with the occurence
of projected linear decision rules (39) as variables in the probabilistic constraint of (41). More precisely,
we are led to the following optimization problem (where again x := (Ft, ft)t=1,...T ):

minimize
T∑
t=1

E
{
〈ht, δt(x, ξ)〉+

〈
Pt,
(

t∑
τ=1

A
(1)
t,τ δτ (x, ξ) +

t∑
τ=1

B
(1)
t,τ ξτ − b(1)t

)
+

〉}
(42)

subject to

P
(

t∑
τ=1

A
(2)
t,τ δτ (x, ξ) +

t∑
τ=1

B
(2)
t,τ ξτ ≤ b

(2)
t , t = 1, . . . , T

)
≥ p.

The challenge now is to deal with the projected linear decision rules inside the probabilistic constraint
and to reduce this issue to a tractable linear structure of type (32). To this aim, with each index tuple

(i1,1, . . . , i1,n1 , . . . , iT,1, . . . iT,nT ) ∈ {1, 2, 3}
∑T
t=1 nt
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we associate the following x−dependent partition of the space of events:

S(i1,1,...,i1,n1 ,...,iT,1,...iT,nT )(x) :=

ω ∈ Ω |


(Ftξ1:t−1(ω) + ft)j ≤ (y

t
)j if it,j = 1

(y
t
)j ≤ (Ftξ1:t−1(ω) + ft)j ≤ (yt)j if it,j = 2

(Ftξ1:t−1(ω) + ft)j ≥ (yt)j if it,j = 3

 .

Actually, this not a partition in the strict sense because the case distinction in its definition allows some
overlap for nonstrict inequality signs. Due to ξ having a density, however, this overlap is of measure
zero. Therefore, we are allowed to reformulate the probability function in (40) as

∑
(i1,1,...,i1,n1 ,...,iT,1,...iT,nT )∈{1,2,3}

∑T
t=1 nt

P


ξ ∈ S(i1,1,...,i1,n1 ,...,iT,1,...iT,nT )(x),
t∑

τ=1

nτ∑
j=1

(δτ (x, ξ))j(A
(2)
t,τ )j +

t∑
τ=1

B
(2)
t,τ ξτ ≤ b

(2)
t

(t = 1, . . . , T )

 ,

where (A
(2)
t,τ )j refers to column j of the matrix A(2)

t,τ . Observing that, by definition,

(δτ (x, ξ))j =


(y
τ
)j if iτ,j = 1

(Fτξ1:τ−1 + fτ )j if iτ,j = 2
(yτ )j if iτ,j = 3

,

we realize that each event over which the probability is taken above, is described by a system of
random inequalities which is linear in the random vector ξ. Consequently, the probability of each such
event above can be described by

P
(
H̃

(i1,1,...,i1,n1 ,...,iT,1,...iT,nT )

t (x)ξ ≤ h̃
(i1,1,...,i1,n1 ,...,iT,1,...iT,nT )

t (x) (t = 1, . . . , T )
)
.

With ξ being an affine linear mapping of ε according to (24), we may finally write the probabilistic
constraint in (40) as

∑
(i1,1, . . . , i1,n1 , . . . , iT,1, . . . iT,nT )

∈ {1, 2, 3}
∑T
t=1 nt

P

(
H̃

(i1,1,...,i1,n1 ,...,iT,1,...iT,nT )

t (x)ξ ≤
h̃
(i1,1,...,i1,n1 ,...,iT,1,...iT,nT )

t (x) (t = 1, . . . , T )

)
≥ p,

which now involves similar terms as (32).

Clearly this approach for dealing with the probabilistic constraint in (40) quickly becomes prohibitive
due to the number 3

∑T
t=1 nt of terms in the sum above. Even if every decision policy is one-dimensional

(nt = 1 for all t), this yields 3T summands and limits the applicability of the approach to say T = 6, 7
stages. An alternative option would consist in the application of spherical-radial decomposition as
mentioned in Section 3.2.4 which is not restricted to linear probabilistic constraints and would not
suffer from the complexity issue.

4.5 Optimization problem under truncated Gaussian distribution

After introducing our original optimization problem (8), we have passed immediately to hard con-
straints of wait-and-see type in Section 2.2 because otherwise the hard constraints wouldn’t have
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any good chance of ever being satisfied under distributions with unbounded support, e.g., Gaussian.
This change became apparent by requiring B(3)

t,t = 0 in (8), leading to the hard constraints of (9).
When discussing our first optimization problem (33), we noticed that even for hard constraints of wait-
and-see type, the unboundedness of the support of the random vector generates a strong restriction
on the feasible decisions (see Corollary 4.2). In this section we come back to the first optimization
problem but with a Gaussian random vector truncated to a bounded region. This approach will allow
us not only to circumvent the mentioned restriction of problem (33) but even to admit the original hard
constraints in (8) with possibly B(3)

t,t 6= 0.

Definition 4.3 We say that a random vector ε follows a normal distribution with parameters µ,Σ which
is truncated to a Borel measurable set S and then write ε ∼ T N (µ,Σ, S) if there exists a Gaussian
random vector ε̃ ∼ N (µ,Σ) such that

P(ε ∈ B) =
P(ε̃ ∈ S ∩B)

P(ε̃ ∈ S)
for all Borel sets B.

In the following we shall assume in contrast with the previous sections that the noises εt in the prob-
abilistic model (22) are independent and distributed according to ε ∼ T N (0,Σ, S), where Σ is the
block-diagonal matrix introduced in Section 3.

We are now going to check the impact of truncating the Gaussian distribution on the structure of
optimization problem (33).

The terms E[〈ht, yt (ξ1:t−1)〉] in the objective function can be computed analytically since closed-form
expressions are available for the expectation of truncated normal one-dimensional random variables.

Similarly to problem (38), the expectation of the penalty terms can be approximated using Sample
Average Approximation.

As far as the probabilistic constraint in (33) is concerned, the underlying probability function can be
written

P(H
(2)
t (x)ε ≤ h

(2)
t (x) (t = 1, . . . , T )) =

P({H(2)
t (x)ε̃ ≤ h

(2)
t (x) (t = 1, . . . , T )} ∩ {ε̃ ∈ S})

P(ε̃ ∈ S)
=

P(H̃(x)ε̃ ≤ h̃(x))

P(ε̃ ∈ S)
,

where, with I referring to the identity matrix of appropriate size,

H̃(x) :=


H

(2)
1 (x)

...

H
(2)
T (x)
I
−I

 , h̃(x) :=


h
(2)
1 (x)

...

h
(2)
T (x)
S
−S

 .

Consequently, the probabilistic constraint in (33) turns into

P(H̃(x)ε̃ ≤ h̃(x)) ≥ p̃, where p̃ := p · P(ε̃ ∈ S). (43)

Due to ε̃ being a Gaussian random vector, this probabilistic constraint is exactly of the same nature as
the original one in (33) which was discussed in Section 3.2.4.

Addressing finally the almost sure constraints in (33), they can be equivalently formulated as

max
ε∈S

(
H

(3)
t (x)

)j
ε ≤ h

(3)
t,j (x), ∀t, ∀j, (44)
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where
(
H

(3)
t (x)

)j
refers to the jth line of H(3)

t (x).

We consider two cases for S: a box and an ellipsoid. If S := [S, S] is a box, the maximum in the
left-hand-side of (44) can be computed analytically using the following lemma:

Lemma 4.4 ([16], Lemma 2) For any x we have that

max
y∈S

xTy =
1

2

(
xT (S + S) + |x|T (S − S)

)
.

As a result, if S is a box, since
(
H

(3)
t (x)

)j
and h(3)t,j (x) are affine functions of x, the almost sure

constraints in (33) can be reformulated as explicit convex constraints in x.

Now taking for S the ellipsoid

S = {x ∈ RT : (x− µ)TΣ−1(x− µ) ≤ κ2},

if vector wt,j(x) is the transpose of
(
H

(3)
t (x)

)j
then constraint (44) can be reformulated as the

explicit conic quadratic (convex) constraint

µTwt,j(x) + κ
√
wt,j(x)TΣwt,j(x) ≤ h

(3)
t,j (x).

We end up again with a convex optimization problem.

Finally, observe that the term P(ε̃ ∈ S) in (43) can be computed numerically both in the case when
S is a box (using Genz’ code as described in [15] for instance) and when S is an ellipsoid.
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A Algorithm for computing coefficients c, γ, δ, and θ of decom-
position (23)

Lemma A.1 Let ξt satisfy (22) and for any positive integers t, j, let It,j, Jt,j , and Ht,j be the sets
given by

It,j(m) = {k ∈ N : 1 ≤ k ≤ min(pt+1(m), t+ 1− j)},
Jt,j(m) = {k ∈ N : 1 ≤ k ≤ min(t, pt+1(m)), j ≤ rt+1−k(m)},
Ht,j(m) = {k ∈ N : 1 ≤ k ≤ min(t, pt+1(m)), j ≤ st+1−k(m)}.

We also define

Xt(m) = max (rt+1−k(m), k = 1, . . . ,min(t, pt+1(m))) ,

Yt(m) = max (st+1−k(m), k = 1, . . . ,min(t, pt+1(m))) .

The coefficients c, γ, δ, and θ in the decompositions of ξ1(m), ξ2(m), . . . , ξT (m),m = 1, . . . ,M ,
of the form (23) are computed iteratively as follows:

Initialization: For m = 1, . . . ,M , set c1(m) = µ1(m)
α1,0(m)

, r1(m) = p1(m), γ1,k(m) = −α1,k(m)

α1,0(m)
, k =

1, . . . , p1(m), s1(m) = q1(m), δ1,k(m) =
β1,k(m)

α1,0(m)
, k = 1, . . . , q1(m), and θ1,1(m) = β1,0(m)

α1,0(m)
.

Loop: For m = 1, . . . ,M and for t = 1, . . . , T − 1,

ct+1(m) =
µt+1(m)

αt+1,0(m)
−

min(t,pt+1(m))∑
k=1

αt+1,k(m)

αt+1,0(m)
ct+1−k(m).

θt+1,j(m) =



βt+1,0(m)

αt+1,0(m)
for j = t+ 1,

βt+1,t+1−j(m)

αt+1,0(m)
−

∑
k∈It,j(m)

αt+1,k(m)

αt+1,0(m)
θt+1−k,j(m) for t+ 1−min(t, qt+1(m)) ≤ j ≤ t,

−
∑

k∈It,j(m)

αt+1,k(m)

αt+1,0(m)
θt+1−k,j(m) for 1 ≤ j ≤ t−min(t, qt+1(m)).

Coefficient γt+1,j(m) is given by

−αt+1,j+t(m)

αt+1,0(m)
−

∑
k∈Jt,j(m)

αt+1,k(m)

αt+1,0(m)
γt+1−k,j(m) for 1 ≤ j ≤ min(pt+1(m)− t,Xt(m)),

−αt+1,t+j(m)

αt+1,0(m)
for 1 + min(pt+1(m)− t,Xt(m)) ≤ j ≤ pt+1(m)− t,

−
∑

k∈Jt,j(m)

αt+1,k(m)

αt+1,0(m)
γt+1−k,j(m) for max (1, 1 + min(pt+1(m)− t,Xt(m))) ≤ j ≤ Xt(m).

Coefficient δt+1,j(m) is given by

βt+1,j+t(m)

αt+1,0(m)
−

∑
k∈Ht,j(m)

αt+1,k(m)

αt+1,0(m)
δt+1−k,j(m) for 1 ≤ j ≤ min(qt+1(m)− t, Yt(m)),

βt+1,t+j(m)

αt+1,0(m)
for 1 + min(qt+1(m)− t, Yt(m)) ≤ j ≤ qt+1(m)− t,

−
∑

k∈Ht,j(m)

αt+1,k(m)

αt+1,0(m)
δt+1−k,j(m) for max (1, 1 + min(qt+1(m)− t, Yt(m))) ≤ j ≤ Yt(m).
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Finally,

rt+1(m) = max (pt+1(m)− t,Xt(m)) and st+1(m) = max (qt+1(m)− t, Yt(m)) .

Proof. We fix a component m and to alleviate notation, we drop (m) in the proof. The initialization is
immediate, writing (22) for t = 1. Now assume that for some t < T , the decompositions of ξ1, . . . , ξt
of the form (23) are available. To obtain the decomposition of ξt+1, we use (22) to obtain

ξt+1 =
µt+1

αt+1,0

−
min(t,pt+1)∑

k=1

αt+1,k

αt+1,0

ξt+1−k +

min(t,qt+1)∑
k=0

βt+1,k

αt+1,0

εt+1−k

−
pt+1∑

k=1+min(t,pt+1)

αt+1,k

αt+1,0

ξt+1−k +

qt+1∑
k=1+min(t,qt+1)

βt+1,k

αt+1,0

εt+1−k.

In the first sum, since for all index k ∈ {1, 2, . . . ,min(t, pt+1)} we have 1 ≤ t + 1 − k ≤ t, we
know for ξt+1−k a decomposition of the form (23) with known coefficients c, γ, δ, and θ. Using these
expressions of ξt+1−k, this first sum can be written

−
min(t,pt+1)∑

k=1

αt+1,k

αt+1,0

(
ct+1−k +

rt+1−k∑
j=1

γt+1−k,jξ1−j +

st+1−k∑
j=1

δt+1−k,jε1−j +
t+1−k∑
j=1

θt+1−k,jεj

)
.

Gathering the terms that depend neither on noise ε nor on ξ, we obtain the expression of ct+1.

The portion depending on ε1, . . . , εt+1 can be written

t+1∑
j=t+1−min(t,qt+1)

βt+1,t+1−j

αt+1,0

εj −
t∑

j=1

∑
k∈It,j

αt+1,k

αt+1,0

θt+1−k,j

 εj.

We then consider the decomposition of ξt+1 obtained replacing t by t + 1 in (23). Identifying the
portion of this decomposition depending on ε1, . . . , εt+1 with the expression above, we obtain the
expressions of the coefficients θt+1,j, j = 1, . . . , t+ 1.

The portion that depends on ξ0, ξ−1, . . . , can be written

−
pt+1−t∑

j=1+min(0,pt+1−t)

αt+1,t+j

αt+1,0

ξ1−j −
Xt∑
j=1

∑
k∈Jt,j

αt+1,k

αt+1,0

γt+1−k,j

 ξ1−j.

From that expression, we obtain the desired value of rt+1 as well as the announced formulas for
coefficients γt+1j, j = 1, . . . , rt+1.

Finally, the portion depending on ε0, ε−1, . . ., can be written

qt+1−t∑
j=1+min(0,qt+1−t)

βt+1,t+j

αt+1,0

ε1−j −
Yt∑
j=1

 ∑
k∈Ht,j

αt+1,k

αt+1,0

δt+1−k,j

 ε1−j.

From that expression, we obtain the desired value of st+1 as well as the announced formulas for
coefficients δt+1,j, j = 1, . . . , st+1. �
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