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Abstract

In the present paper we give a theoretical background of the Stochastic

Weighted Particle Method (SWPM) for the classical Boltzmann equation.

This numerical method was developed for problems with big deviation in mag-

nitude of values of interest. We describe the corresponding algorithms, give a

brief summary of the convergence theory and illustrate the new possibilities

by numerical tests.

Contents

1 Introduction 2

2 Description of the SWPM 3

2.1 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Examples of the SWPM . . . . . . . . . . . . . . . . . . 8

2.3 Reduction of Particles . . . . . . . . . . . . . . . . . . . 10

2.4 Theoretical Foundation and Convergence . . . . . . . . . 13

3 Numerical examples and tests 16

3.1 Statistical notions . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Spatially homogeneous Boltzmann Equation . . . . . . . 17

3.3 Spatially 2-dimensional Boltzmann Equation . . . . . . . 23

References 31

1



1 Introduction

The object of our considerations is the classical Boltzmann equation for a monoatomic,

dilute gas

@

@t
f + (v; grad

x
f) = Q(f; f) (1)

which describes the time evolution of the particle density

f = f(t; x; v) : R+� 
�R
3! R+:

Here R+ denotes the set of non-negative real numbers and 
 � R
3 is a domain

in physical space. The right-hand side of the equation (1), known as the collision

integral or the collision term, is of the form

Q(f; f)(v) =

Z
R3

Z
S2

B(v;w; e)
�
f(v0)f(w0)� f(v)f(w)

�
de dw : (2)

Note that Q(f; f) depends on t and x only as parameters, so we have omitted this

dependence and written (2) in order not to overload the formulae. The following

notations have been used in (2): v;w 2 R3 are the pre-collision velocities, e 2 S2 �
R

3 is a unit vector, v0; w0 2 R
3 are the post-collision velocities and B(v;w; e) is

the collision kernel. The operator Q(f; f) represents the change of the distribution

function f(t; x; v) due to the binary collisions between particles. A single collision

results in the change of the velocities of the colliding partners

v;w ! v0; w0 : (3)

The collision transformation (3) conserves the momentum and the energy

v + w = v0 + w0; jvj2 + jwj2 = jv0j2 + jw0j2 (4)

and can be written in the following form

v0 =
1

2
(v + w + juje); w0 = 1

2
(v + w � juje) ; e 2 S2 ; (5)

where u = v � w denotes the relative velocity of the colliding particles. We will

deal with the following classical models for the collision kernel B(v;w; e). The

particles of the hard spheres model are assumed to be the ideally elastic balls. The

corresponding collision kernel takes the form

B(v;w; e) =
1

4
p
2 �Kn

juj (6)

where Kn denotes the dimensionless Knudsen number. We will also consider the

collision kernel of the form

B(v;w; e) =
1

4�
(7)
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which corresponds to the Maxwell molecules. The Boltzmann equation (1) is sub-

jected to an initial condition

f(0; x; v) = f0(x; v); x 2 
; v 2 R3

and to the boundary conditions on � = @
. If the domain under consideration is

unbounded we have to pose an additional condition at in�nity

f(t; x; v)! f1(t; v) for jxj ! 1 : (8)

In this paper we apply the Stochastic Weighted Particle Method (SWPM) to the

numerical solution of the Boltzmann equation (1). This method was introduced in

[RW96b], where we presented �rst numerical results for the one-dimensional heat ex-

change problem. The convergence of the method was investigated in [RW98], where

we were also able to show a drastic reduction of the stochastic uctuations using the

SWPM for one model kinetic equation. In [RW96a] we presented a detailed study

of di�erent e�ects of the numerical solution of this equation. The computation of

the macroscopic quantities in the regions with low particle density was of special

interest. In [RSW98] the reduction of particles was investigated. The SWPM was

applied to the numerical solution of the spatially two-dimensional Boltzmann equa-

tion in [RW01]. The main di�erence between the SWPM and other particle schemes

for the Boltzmann equation [Bir94], [NGS91], [IR89] is the idea of a random weight

transfer between particles during collisions.

The paper is organised as follows. In Section 2. we describe the SWPM proce-

dure, give two examples for the reduction of particles and formulate the convergence

theorem. Some numerical examples for spatially homogeneous and for spatially two-

dimensional Boltzmann equation will be presented in Section 3. Finally we draw

some conclusions.

2 Description of the SWPM

2.1 The Algorithm

The main idea of all particle methods for the Boltzmann equation (1) is an approx-

imation of the sequence of measures

f(tk; x; v)dxdv ; tk = k�t ; k = 0; 1; : : : ; �t > 0 ;

by a sequence of point measures

�(tk; dx; dv) =

n(tk)X
j=1

gj(tk)Æ(xj(tk); vj(tk))
(dx; dv) ; k = 0; 1; : : : ; (9)

de�ned by the families of particles�
gj(tk); xj(tk); vj(tk)

�
n(tk)

j=1
; k = 0; 1; : : : : (10)

3



The behaviour of the system (10) can be described as follows. The �rst step (k = 0)

is an approximation of the initial measure

f0(x; v)dxdv

by a system of particles (10) for t0 = 0. Usually, one uses constant weights

gj(0) = g ; j = 1; :::; n(0):

Then the particles move according to their velocities, i.e.

xj(t) = xj(tk) + (t� tk)vj(tk) ; t 2 [tk; tk+1] :

If a particle crosses the \outow boundary" during this step then this particle will

be removed from the further simulation. The velocity of a particle changes according

to the boundary condition if this particle hits the \boundary of the body". Then

the particle continues its motion with a new velocity for the rest of the time inter-

val. The weights of particles remain the same during this \free ow step". Through

the \inow boundary" new particles enter the computational domain. The \colli-

sion step" can be described as follows. First, all particles are sorted in the spatial

cells 
` ; ` = 1; :::; Nc : These cells de�ne a non-overlapping decomposition of the

computational domain


 =

Nc[
`=1


` :

In each cell 
`; ` = 1; :::; Nc ; collisions of n`(tk) particles are simulated. This is the

most crucial part of the whole procedure. Here we also have the main di�erence

between the SWPM and other particle methods which use constant weights. The

collision simulation step in one spatial cell 
`; ` = 1; : : : ; Nc ; corresponds to the

molli�ed equation [CIP94]

@f

@t
(t; x; v) =Z



Z
R3

Z
S2

h`(x; y)B(v;w; e)
�
f(x; v0)f(y;w0)� f(x; v)f(y;w)

�
de dw dy ;

where

h`(x; y) =
1

j
`j
�
`

(x)�
`
(y) ; (11)

is a spatial molli�er, j
`j denotes the volume of the cell 
` and �
`
(x) is the indicator

function of the set 
`.

The stochastic process of the collisions is

Z(t) = f(gj(t); xj(t); vj(t)) ; j = 1; :::; ng ; t � tk : (12)
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Here we now use the local numbering of particles in the cell 
` and denote n = n`(tk).

Let Z be the state space of the process (12), i.e. the union of all possible particles

systems of the form (10). The in�nitesimal generator of the process (12) is given by

A(�)(z) =
Z
Z

�
�(~z)� �(z)

�
Q(z; d~z) (13)

where Q denotes the transition measure

Q(z; d~z) =
1

2

X
1�i 6=j�n

Z
S2

ÆJ(z;i;j;e) q(z; i; j; e) de ; (14)

� is a measurable function of the argument

z = ((g1; x1; v1); : : : ; (gn; xn; vn))

and

�
J(z; i; j; e)

�
k

=

8>>>><
>>>>:

(gk; xk; vk) ; if k � n ; k 6= i; j ;
(gi �G(z; i; j; e); xi; vi)) ; if k = i ;
(gj �G(z; i; j; e); xj; vj) ; if k = j ;
(G(z; i; j; e); xi; v

0
i
) ; if k = n + 1 ;

(G(z; i; j; e); xj; v
0
j
) ; if k = n + 2 ;

(15)

where v0
i
; v0

j
are de�ned as in (5). The function G(z; i; j; e) is called \weight trans-

fer function". This function, the intensity kernel q(z; i; j; e) of the generator (13)

and the collision kernel of the Boltzmann equation (1) are connected via the basic

relationship

q(z; i; j; e)G(z; i; j; e) = h`(xi; xj)B(vi; vj; e) gi gj (16)

which has been proved [RW96a] to be suÆcient for the convergence of the method.

The behaviour of the process (12) is as follows: The waiting time �̂ (z) between

process jumps can be de�ned either as a random variable with the distribution

Prob f�̂ (z) � tg = exp(��̂(z) t) ;

where

�̂(z) =
1

2

X
1�i6=j�n

q̂max(z; i; j) (17)

and Z
S2

q(z; i; j; e) de � q̂max(z; i; j) : (18)

or as a deterministic object by

�̂(z) = �̂(z)�1: (19)
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Then the collision partners (i.e. the indices i and j) must be chosen. The distribution

of the parameters i and j is determined by the probabilities

q̂max(z; i; j)P
1�i6=j�n q̂max(z; i; j)

: (20)

For given i and j ; the jump is �ctitious with probability

1�

R
S2

q(z; i; j; e) de

q̂max(z; i; j)
: (21)

Otherwise the process (12) jumps to a new state ~z = J(z; i; j; e) as described in (15).

The distribution of the parameter e is

q(z; i; j; e)R
S2

q(z; i; j; e) de
: (22)

There is a degree of freedom in our method, namely an appropriate choice of the

weight transfer function G : This function should always ful�l the condition

G(z; i; j; e) � min(gi; gj)

in order to avoid negative weights in (15). We consider the function G in the form

G(z; i; j; e) =
min(gi; gj)

1 + (z; i; j; e)
; (23)

where (z; i; j; e) � 0 is a parameter of the method which can be chosen arbitrarily,

depending on our interest. The parameter  can vary in di�erent regions of the ow

(cell 
`), for di�erent collision partners i and j or even as a function of the unit

vector e. The jump intensity function q is then de�ned by the basic relationship

(16) as

q(z; i; j; e) = (1 + (z; i; j; e)) max(gi; gj)h`(xi; xj)B(vi; vj; e) : (24)

According to (18), we need a majorant for the function (24). Note that the function

(11) is now just a constant, i.e.

h`(xi; xj) =
1

j
`j
;

because we have assumed that all particles are sorted in cells. Furthermore, we use

the majorants

1 + (z; i; j; e) � 1 + C;max ; (25)Z
S2

B(vi; vj; e) de � CB;max ;

max(gi; gj) � gi + gj � gmin(z) ;
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where

gmin(z) = min
1�i�n

gi ; (26)

to obtain

q̂max(z; i; j) = (1 + C;max)CB;max

1

j
`j
(gi + gj � gmin(z)) :

Now we are able to compute the waiting time parameter via (17)

�̂(z) =
1

2
(1 + C;max)CB;max

1

j
`j
(n� 1) (2gsum(z)� ngmin(z)) ; (27)

where

gsum(z) =

nX
i=1

gi ; (28)

as well as all other parameters of our process. The probability of the parameters i

and j is determined via (20)

gi + gj � gmin(z)

(n � 1) (2 gsum(z)� n gmin(z))
: (29)

The parameter i is then to be chosen according to the probability

(n � 2) gi + gsum(z)� (n� 1) gmin(z)

(n � 1) (2 gsum(z)� n gmin(z))
:

Given i ; the parameter j is chosen according to the probability

gi + gj � gmin(z)

(n � 2) gi + gsum(z)� (n� 1) gmin(z)
:

Given i and j ; the jump is �ctitious with probability (21)

1 �

R
S2

(1 + (z; i; j; e))B(vi; vj; e) de

(1 + C;max)CB;max

max(gi; gj)

gi + gj � gmin(z)
; (30)

otherwise the distribution of the parameter e is (22),

(1 + (z; i; j; e))B(vi; vj; e)R
S2

(1 + (z; i; j; e))B(vi; vj; e) de
; (31)

and the new state is ~z = J(z; i; j; e) as de�ned in (15). For the Boltzmann equation

(1) with the collision kernel (6) we obtain for the constant CB;maxZ
S2

B(vi; vj; e) de =
jvi � vjjp

2Kn
� U`p

2Kn
= CB;max ; (32)

where U` denotes the maximum relative velocity in the cell 
` which has to be

estimated in every time step. The corresponding estimate for the Maxwell molecules

is trivially Z
S2

B(vi; vj; e) de = 1 = CB;max : (33)

7



2.2 Examples of the SWPM

In this subsection we consider three examples for the particular choice for the pa-

rameters of the SWPM.

Example 1 Consider the special case

gi = g = const and  = 0 :

The parameter gmin remains constant

gmin = g :

The parameter gsum is

gsum = g n :

The waiting time parameter �̂(z) is for the hard spheres model

�̂(z) =
1

2
p
2Kn

U`

j
`j
g n (n� 1)

and for the Maxwell molecules

�̂(z) =
1

2

1

j
`j
g n (n� 1) :

The deterministic time counter �̂ (z) is nothing else than Bird's well-known \no time
counter"

�̂ (z) =
2
p
2Knj
`j

g n (n � 1)U`

:

For the Maxwell molecules we obtain

�̂(z) =
2j
`j

g n (n � 1)
:

The index i is uniformly distributed on

f1; : : : ; ng :

Given i, the index j is uniformly distributed on

f1; : : : ; ng n fig :

Given i and j, the weight transfer function G is

G = g :

For the hard spheres model the jump is �ctitious with probability

1 � jvi � vjj
U`

:

There are no �ctitious jumps for the Maxwell molecules.

The parameter e is uniformly distributed on the unit sphere S2.
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There is no increase in the number of particles in the system. The particles for

k = i and k = j in (15) have zero weights and should therefore be removed from the

system. Here we would like to point out that our SWPM is a generalisation of the

Bird's DSMC method.

Example 2 Consider the second special case

gi � arbitrary and  = 0 :

The parameter gmin should be updated after every collision

gmin = min
1�i�n

gi :

The parameter gsum is

gsum =

nX
i=1

gi; :

The waiting time parameter �̂(z) is for the hard spheres model

�̂(z) =
1

2
p
2Kn

U`

j
`j
(n� 1) (2 gsum(z)� n gmin(z)) :

and for the Maxwell molecules

�̂(z) =
1

2

1

j
`j
(n� 1) (2gsum(z)� ngmin(z)) :

The deterministic time counter is always

�̂ (z) = (�̂(z))�1 :

The index i is to be chosen according to the probability

(n � 2) gi + gsum(z)� (n� 1) gmin(z)

(n � 1) (2 gsum(z)� n gmin(z))
:

Given i, the index j is chosen according to the probability

gi + gj � gmin(z)

(n � 2) gi + gsum(z)� (n� 1) gmin(z)
:

Given i and j, the weight transfer function G is

G = min(gi; gj) :

The jump is �ctitious with probability

1 � jvi � vjj
U`

max(gi; gj)

gi + gj � gmin(z)

for the hard spheres and

1 � max(gi; gj)

gi + gj � gmin(z)

for the Maxwell molecules.

The parameter e is uniformly distributed on the unit sphere S2.
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The number of particles increases by one in each collision with unequal weights,

according to (15). If all initial particles and all inow particles have the same

weight then this case is identical to the previous one.

Example 3 Consider the third special case

gi � arbitrary and  = const > 0 :

In this case the waiting time parameter �̂(z) for the hard spheres model is

�̂(z) =
1 + 

2
p
2Kn

U`

j
`j
(n� 1) (2 gsum(z)� n gmin(z)) :

and for the Maxwell molecules

�̂(z) =
1 + 

2

1

j
`j
(n� 1) (2gsum(z)� ngmin(z))

leading to the corresponding change for the deterministic time counter

�̂ (z) = (�̂(z))�1 :

All other parameters of the process remain the same.

In this case the number of particles increases by two in each collision. This procedure

can be used eÆciently to reduce stochastic uctuations arising in computation of

the macroscopic quantities in regions with low particle density, as we showed in

[RW96a].

But the new small particles move and will probably reach the region where

the particle density is normal. There it is necessary to use the second special case

(Example 2) for the collisions, which means that the number of particles will increase

further without any advantage being gained. The best situation is, of course, if the

particles disappear through the \outow boundary" of the computational domain at

a rate corresponding to the \production rate" there. In such a situation we will still

be dealing with an asymptotically constant number of particles, but with more small

particles in the low density regions (this is our improvement) which are producing

more small and probably useless particles on the way to the \outow boundary"

(this is the price). In all other situations reduction of the number of particles is

necessary.

2.3 Reduction of Particles

In [RSW98] we give a systematic study of the theoretical and numerical aspects of

reducing the number of particles including the theoretical estimates for the error of

the reduction in the bounded Lipschitz metric as well as in the Sobolev space H�2.

In [MW02] the authors introduce a purely stochastic reduction procedure and prove

the convergence of the SWPM with such reductions. In the present paper we give
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a short summary of these results. First of all we introduce an additional parameter

nmax > 0 which determines some bound for the number of particles in the system.

Then we change the transition measure (14) to

Q(z; d~z) =

�
Qcoll(z; d~z) ; if n < nmax

Qred(z; d~z) ; if n � nmax

: (34)

The transition measure, corresponding to collisions, remains unchanged (cf. (14))

Qcoll(z; d~z) =
1

2

X
1�i6=j�n

Z
S2

ÆJ(z;i;j;e) q(z; i; j; e) de ;

while the transition measure, corresponding to reductions, has the following form

Qred(z; d~z) = �redPred(z; d~z) ; (35)

where �red > 0 is some waiting time parameter and Pred is the reduction measure.

The procedure of reduction contains two steps. The �rst step is the dividing of

the whole particle system (10) in a set of clusters in velocity space, i.e. groups of

particles having almost the same velocities. Then the reduction of particles takes

place clusterwise, i.e. each cluster will be replaced by few (one or two as a rule)

particles. The construction of the clusters we use completely deterministic recursive

procedure which can be explained as follows. Let

z =
�
gj; xj; vj

�nc
j=1

(36)

be a cluster of particles which is identical at the beginning of the recursion with a

given system (10). Then we compute the mass, the mean velocity and the covariance

matrix of this cluster

%(z) =

ncX
i=1

gj 2 R+ ; (37)

V (z) =
1

%(z)

ncX
i=1

gj vj 2 R3 ; (38)

M(z) =
1

%(z)

ncX
i=1

gj (vj � V )(vj � V )> 2 R3�R
3 : (39)

Then we divide the cluster (36) in two sons using the criterion

(vi � V; emax)
�
>

0 : (40)

Here emax denotes the eigenvector of M corresponding to its largest eigenvalue.

Then we continue dividing the sons of the initial cluster in the same manner. This

procedure stops if an admissible cluster has less particles as will be required by

11



the reduction or if the desired number of clusters is reached and all of them are

admissible. There are several possibilities to reduce the number of particles in an

admissible cluster

z =
�
gj; xj; vj

�nc
j=1

to one or two. Here we give two examples.

Example 4 The cluster is admissible for the reduction if its \mass" %(z) is less

then some global upper bound for the particle weight gmax. Choose the index i cor-
responding to discrete probabilities gi=%(z) and replace the cluster by one particle

~z = Jred;1(z; i) =
�
%(z); xi; vi

�
:

In this case we have

pred;1(z; d~z) =
1

%(z)

ncX
i=1

ÆJred;1(z;i)(d~z) :

This reduction conserves the mass of the cluster while the momentumand the energy

are not conserved. However, the expectation of all linear functionals of the formZ
Z

�(~z) pred;1(z; d~z) (41)

with

�(z) =

ncX
i=1

gi '(xi; vi) (42)

for an arbitrary test function ' does not changeZ
Z

�(~z)pred;1(z; d~z) = (43)

ncX
i=1

gi

%(z)
�
�
Jred;1(z; i)

�
=

ncX
i=1

gi

%(z)
%(z)'(xi; vi) = �(z) : (44)

Thus this reduction procedure conserves the mass exactly and in average all other

usual moments.

Example 5 The cluster is admissible for the reduction if its \mass" %(z) is less

then 2 gmax. Choose the unit vector e 2 S2 corresponding to the uniform measure on

S2 and replace the cluster by two particles

(Jred;2(z; i; j; e))1 =
�%(z)

2
; xi; V +

p
trM e

�
;

(Jred;2(z; i; j; e))2 =
�%(z)

2
; xj; V �

p
trM e

�
:

12



In this case we have

~z =
�
(Jred;2(z; i; j; e))1 ; (Jred;2(z; i; j; e))2

�
and

pred;2(z; d~z) =
1

%2(z)

ncX
i;j=1

gi gj

Z
S2

ÆJred;2(z;i;j;e)(d~z) de :

Note that two particles are produced. Each of them is given half of the weight of the

original cluster. Their velocities are determined by the conservation of momentum

and energy up to a random vector e 2 S2. Thus this reduction procedure is full

conservative. However, the expectation of the general functionals (42) will di�er

from the exact value.

We refer to [Sch93] and [RSW98] for more examples of reductions.

The global reduction measure (35) is then de�ned as product of the cluster

reduction measures which are assumed to be independent of each other.

2.4 Theoretical Foundation and Convergence

We consider the bounded Lipschitz metric

%L(m1;m2) = sup
k'kL�1

������
Z


�R3

'(x; v)m1(dx; dv)�
Z


�R3

'(x; v)m2(dx; dv)

������
on the space M(
�R

3) of �nite Borel measures on 
�R
3 : Here the notations

k'kL = max

(
k'k1 ; sup

(x;v)6=(y;w)2
�R3

j'(x; v)� '(y;w)j
jx� yj+ jv � wj

)
(45)

and

k'k1 = sup
(x;v)2
�R3

j'(x; v)j (46)

are used.

Let n 2 N be some parameter connected to the number of particles in the

system which will be now denoted by n
(n)
s . Thus all parameters of the SWPM are

now assumed to be functions of n.

The following assumptions have to be made in order to formulate the convergence

result of the SWPM with reductions.

1. The physical domain 
 is assumed to be compact.
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2. The global particle weight bound satis�es

lim
n!1

g(n)max = 0 : (47)

3. The particle number bound indicating reduction (cf. (34)) satis�es

lim
n!1

n(n)max = 1 : (48)

4. The parameter of the waiting time before reduction (cf. (35)) satis�es

lim
n!1

�
(n)

red = 1 : (49)

5. The reduction e�ect is suÆciently strong, i.e.

P
(n)

red (z;Z(n)(Æ)) = 1 ; 8 z 2 Z(n) n Z(n)(0) ; (50)

for some Æ 2 (0; 1) ; where the notation

Z(n)(Æ) =
n
z 2 Z(n) : ns � (1 � Æ)n(n)max

o
is used. Note that

Z(n) n Z(n)(0) =
n
z 2 Z(n) : ns > n(n)max

o
is the set of all possible starting points of a reduction jump.

6. The reduction is suÆciently precise, i.e.

lim
n!1

sup
'2Dr

sup
z2Z(n)nZ(n)(0)

X
i2I

(n)
r (z)

�������(zi)�
Z
Z(n)

�(~zi)P
(n)

red;i(zi; d~zi)

������ = 0 ; (51)

for any � of the form (42) and for any r > 0. The set Dr in (51) is de�ned as

follows

Dr =
n
'r : k'k � 1

o
(52)

where

'r(x; v) =

8<
:

'(x; v) ; jvj � r;

(r + 1� jvj)'(x; v) ; r < jvj � r + 1;

0 ; jvj > r + 1:

(53)

The particle system z is decomposed in clusters. The index set I
(n)
r (z) contains

the indices of only such clusters which contain particles having velocities within

the ball Br(0)

I(n)
r
(z) =

n
i : zi \ f(x; v; g) : jvj < rg 6= �

o
(54)

Note that this technically complicated assumption is trivially ful�lled for the

stochastic reduction from Example 4 because of the property (43).
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7. The reduction conserves the mass, i.e.

%(~z) = %(z) : (55)

8. The energy of the system after every reduction ful�lsZ
Z(n)

trM(~z) p
(n)

red(z; d~z) � c trM(z)

for some constant c > 0.

Now we are able to formulate the convergence theorem.

Theorem 6 Let F be a function of time t � 0 with values in M(
�R3) satisfying

the equationZ

�R3

'(x; v)F (t; dx; dv) =

Z

�R3

'(x; v)F0(dx; dv)+

1

2

tZ
0

Z

�R3

Z

�R3

Z
S2

�
'(x; v0) + '(y;w0)� '(x; v)� '(y;w)

�
�

h(x; y)B(v;w; e) deF (s; dx; dv)F (s; dy; dw) ds ;

for all test functions ' on 
�R
3 such that k'kL <1 :

Assume that the solution satis�es

sup
t2[0;S]

F (t;
�R3) � c(S)F0(
�R
3)

and

sup
t2[0;S]

Z

�R3

jvj2F (t; dx; dv) � c(S)

Z

�R3

jvj2F0(dx; dv) ;

for arbitrary S � 0 and some constants c(S) > 0 :

Assume that the process parameters satisfy all assumptions formulated above.

Let

�(n)(t; dx; dv) =

n
(n)
s (t)X
i=1

g
(n)

i
(t) Æ

x
(n)
i (t)

(dx) Æ
v
(n)
i (t)

(dv) ; t � 0

denote the sequence of empirical measures of the processes (12). If

lim
n!1

E %L(�
(n)(0); F0) = 0

and

lim sup
n!1

E

Z

�R3

jvj2 �(n)(0; dx; dv) <1

then

lim
n!1

E sup
t2[0;S]

%L(�
(n)(t); F (t)) = 0 ; 8S > 0 :
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3 Numerical examples and tests

3.1 Statistical notions

First we introduce some de�nitions and notations that are helpful for the under-

standing of stochastic numerical procedures. Functionals of the form

F (t) =

Z
R3

'(v) f(t; v) dv : (56)

are approximated by the random variable

�(n)(t) =
1

n

nX
i=1

'(vi(t)) ; (57)

here (v1(t); : : : ; vn(t)) are the velocities of the particle system. In order to estimate

and to reduce the random uctuations of the estimator (57), a numberN of indepen-

dent ensembles of particles is generated. The corresponding values of the random

variable are denoted by

�
(n)

1 (t); : : : ; �
(n)

N
(t) :

The empirical mean value of the random variable (57)

�
(n;N)

1 (t) =
1

N

NX
j=1

�
(n)

j
(t) (58)

is then used as an approximation to the functional (56). The error of this approxi-

mation is

e(n;N)(t) = j�(n;N)

1 (t)� F (t)j

and consists of the following two components.

The systematic error is the di�erence between the mathematical expectation

of the random variable (57) and the exact value of the functional, i.e.

e(n)
sys
(t) = E�(n)(t)� F (t) :

The statistical error is the di�erence between the empirical mean value and the

expected value of the random variable, i.e.

e
(n;N)
stat (t) = �

(n;N)

1 (t)�E�(n)(t) :

A con�dence interval for the expectation of the random variable �(n)(t) is obtained

as

Ip =

"
�
(n;N)

1 (t)� �p

r
Var �(n)(t)

N
; �

(n;N)

1 (t) + �p

r
Var �(n)(t)

N

#
; (59)
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where

Var �(n)(t) := E
�
�(n)(t)� E�(n)(t)

�2
= E

�
�(n)(t)

�2 � �E�(n)(t)�2 (60)

is the variance of the random variable (57), and p 2 (0; 1) is the con�dence level.

This means that

Prob
�
E�(n)(t) =2 Ip

	
= Prob

(
je(n;N)

stat
(t)j � �p

r
Var �(n)(t)

N

)
� p :

Thus, the value

c(n;N)(t) = �p

r
Var �(n)(t)

N

is a probabilistic upper bound for the statistical error.

In the calculations we use a con�dence level of p = 0:999 and �p = 3:2 : The

variance is approximated by the corresponding empirical value (cf. (60)), i.e.

Var �(n)(t) � �
(n;N)

2 (t)�
�
�
(n;N)

1 (t)
�2

;

where

�
(n;N)

2 (t) =
1

N

NX
j=1

�
�
(n)

j
(t)
�2

is the empirical second moment of the random variable (57).

3.2 Spatially homogeneous Boltzmann Equation

In this subsection we consider two examples for spatially homogeneous Boltzmann

equation

@

@t
f = Q(f; f) (61)

for the distribution function f : R+� R
3 ! R+ in the case of Maxwell molecules,

i.e. for the constant collision kernel (7).

We consider �rst the most simple example if the initial distribution is a nor-

malised Maxwell distribution

f0(v) =
1

(2�)3=2
exp

�
�jvj

2

2

�
; v 2 R3 : (62)

Since this function exactly solves the Boltzmann equation (61), i.e.

f(t; v) = f0(v) ; 8 t � 0
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Figure 1: Initial and \�nal" distributions of SWPM particles

all its moments and functionals remain constant in time.

Using SWPM we are able to resolve the velocity space much better than using

particles with constant weights. For example, we are able to compute very small

functionals using relatively low number of particles. As a model of such small

functionals, or \rare events", we will consider \tail" functionals

Tail(t; R) =

Z
jvj�R

f(t; v) dv ; (63)

describing the portion of particles outside the ball of radius R centred in the origin

at time t. If f is a Maxwell distribution (62) then its tail functional is constant in

time and can be computed analytically

Tail(R) = 1� erf
� Rp

2

�
+

2p
�
R exp

�
� R2

2

�
: (64)

In the next �gures we illustrate how the particles occupy a bigger and bigger part

of the velocity space during the time. We use

n(0) = 1 024 ; nmax = 4096 ; gmax = 2=n(0) ;

and generate one ensemble of particles by the SWPM algorithm with stochastic

reduction (see Example 4) on the time interval [0; 16]. The left plot of Fig. 1 shows

the projections of three-dimensional velocities of 1024 particles into the plane v1�v2
while the right plot shows the \�nal" picture after 64 reductions for n(t) = 1234

particles. It is clear to see that having almost the same number of particles the

new system is rather di�erent from the initial picture. Now only half of all particles

is responsible for the resolution of the main stream within the ball jvj � 4 while

the second half of particles is more or less uniformly distributed within much bigger

ball jvj � 8. Thus the new system of particles can be successfully used for the
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Figure 2: 4th reduction of particles
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Figure 3: 64th reduction of particles
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Figure 4: Tail functional for R = 4
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Figure 5: Number of particles in the tail for R = 4

estimation of very rare events, e.g. for the tail functionals (64). The 4th and the

64th reductions of particles are illustrated in Figs. 2-3. It is important that the

\useful" but small particles living in the plotted tails will be not destroyed during

the reduction. Thus the system of particles uniformly occupies bigger and bigger

part of the velocity space during the collisions.

Now we are going to illustrate the numerical computation of the tails

Tail(4) = 0:113398 : : : � 10�3 ; Tail(6) = 0:748837 : : : � 10�7 (65)

using both DSMC and SWPM methods. We solve the Boltzmann equation with

DSMC using n = 65 536 particles and generating N = 4096 independent ensembles.

Using SWPM, we start with n(0) = 16 384 particles and reduce the number of

particles corresponding to Example 4 at each time point t with n(t) = 65 536.

The computational time for N = 4096 independent ensembles is then similar to

the corresponding time of DSMC. Figs. 4 and 6 show the analytical values for the

tails (65) (thick solid lines), the con�dence intervals obtained using DSMC (thin

solid lines) and the con�dence intervals obtained using SWPM (thin dotted lines).

Figs. 5 and 7 show the average number of particles forming the tails. Here the

left plots corresponds to DSMC and the right plots to SWPM. We can see that

20



0 2.5 5 7.5 10 12.5 15

0

5�10-8

1�10-7

1.5�10-7

Figure 6: Tail functional for R = 6
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Figure 7: Number of particles in the tail for R = 6

at the begin of the simulation the width of the con�dence intervals is better for

DSMC due to the higher number of particles. The number of particles forming the

tail remains almost constant for DSMC. The corresponding number increases using

SWPM leading to smaller con�dence intervals. The width of the DSMC con�dence

intervals is four-�ve times larger for R = 6. Thus SWPM can be considered 16-25

times \faster" computing this tail with similar accuracy.

In the next example we study the famous exact solution found by Bobylev

[Bob75] and Krook and Wu [KW77]

f(t; v) = (66)

1

(2�)3=2
(�(t) + 1)

3=2

�
1 + �(t)

��(t) + 1

2
jvj2 � 3

2

��
e�

�(t)+1

2
jvj2 ;

where

�(t) =
2 e�t=6

5 � 2 e�t=6
:

Note that the tail functional (63) can be given for the solution (66) in the closed
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Figure 8: Tail functional (67) for R = 5
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Figure 9: Number of particles in the tail for R = 5

form

Tail(t; R) = 1 � erf
�r�(t) + 1

2
R
�
+ (67)

2p
�

r
�(t) + 1

2
R
�
1 + �(t)R2�(t) + 1

2

�
exp

�
� �(t) + 1

2
R2
�
:

We study the time relaxation of the tail functional (67) on the time interval [0; 32]
using both DSMC and SWPM algorithms. The number of particles for DSMC is

n = 65 536 : SWPM (with the stochastic reduction algorithm from Example 4) is

started using n = 16 384 particles. We reduce the number of particles at each time

point t with n(t) = 65 536. The number of independent ensembles is N = 16 384 :
The computational time is similar for both methods.

In the �gures con�dence intervals obtained using DSMC are shown by thin solid

lines, while con�dence intervals obtained using SWPM are shown by thin dotted

lines. The analytical curves of the tails (67) are displayed by thick solid lines. In

the �gures showing the average numbers of particles forming the tails, the left plots

corresponds to DSMC and the right plots to SWPM. The resolution of the tail with

R = 5 is already better for SWPM as shown in Fig. 8. In other words, SWPM is
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Figure 10: Tail functional (67) for R = 7
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Figure 11: Number of particles in the tail for R = 7

two-three times \faster" computing this tail with similar accuracy. Fig. 9 displays

the corresponding numbers of particles.

Figs. 10 and 11 show the results obtained using SWPM for the tail with R = 7 :
There are no stable DSMC results for this very small tail, while SWPM reproduces

the analytical curve on the whole time interval.

3.3 Spatially 2-dimensional Boltzmann Equation

In this chapter we shall consider some steady state problems for the spatially

2�dimensional Boltzmann equation

(v; gradxf) = Q(f; f) ; (68)

i.e. the problems in which the distribution function

f : 
�R
3! R+ ; 
 � R

3
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depends only on two Cartesian coordinates x1 and x2 as well as on three-dimensional

velocity variable v. Now we consider the hard spheres model (6)

B(v;w; e) =
1

4
p
2 �Kn

jv � wj :

There are no analytical solution of the Boltzmann equation in spatially non-homogeneous

case. Thus we consider �rst the free ow equation (i.e. the case Kn!1)

(v; grad
x
f) = 0 (69)

in order to obtain some analytical information. Let 
 be a half space


 =
n
x 2 R3 : x1 > 0

o
The equations (68), (69) are subjected to the following boundary condition

f(x; v) = fin(x; v) ; x 2 � ; (70)

where

� = fx = (x1; x2; x3) 2 R3 ; x1 = 0g (71)

and the inow function vanishes outside the strip

�in =
n
x 2 R3 ; x1 = 0 ; �b � x2 � b ; x3 2 R

o
(72)

and is de�ned for (v; nx) = v1 > 0 on � as follows

fin(x; v) =

�
fM(v) ; x 2 �in
0 ; otherwise

: (73)

The Maxwell distribution function fM having constant physical parameters %in,

Vin = (V; 0; 0)T and Tin is

fM(v) =
%in

(2� Tin)3=2
exp

�
�jv � Vinj2

2Tin

�
: (74)

Furthermore we assume that the distribution function f vanishes at in�nity

lim
jxj!1

f(x; v) = 0

uniformly with respect to v. The solution of the boundary value problem (69),(70)

is given by the formula

f(x; v) = fin(x+ t v; v); t 2 R; (75)

where

t = t(x; v) = �x1

v1
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is chosen such that

x+ t v 2 �:

The spatial density for this example has been analytically obtained in [RW01] in the

following form

%(x) = (76)

%in

2
p
�

1Z
0

exp
�
� (z1 � �)2

��
erf

�
x2 + b

x1
z1

�
� erf

�
x2 � b

x1
z1

��
dz1 :

Note that the density is a symmetric function with respect to the plane x2 = 0 : We

calculate the density along the vertical straight line

x =

0
@ 1

0:005

0

1
A+ �

0
@ 0

1

0

1
A ; 0 � � � 0:99 : (77)

We assume

b = 0:4 ; %in = 1 ; Tin = 10

and de�ne the inow velocity in the form

Vin = Mach

r
5

3
Tin

0
@ 1

0

0

1
A : (78)

The inow Mach number Mach will vary in the subsequent numerical experiments.

First we choose the inow Mach number in (78) equal to 5:0 and solve the the

Boltzmann equation within the square 
 = (0:0; 2:0)� (�1:0; 1:0). Thus we restrict
the unbounded half-space domain to this square. The square 
 will be uniformly

discretised in Nc = 200 � 200 spatial cells. Since in the collisionless case there

is no mechanism to produce more particles within the computational domain we

start the better resolution of the velocity space directly on the inow boundary

(72). To this end we generate only a portion 0 < cin < 1 of particles corresponding

to the boundary condition (73) while the remaining part 1 � cin of particles will

be generated corresponding to the Maxwell distribution of the form (62) but with

higher temperature

f �
M
(v) =

%in

(2� � Tin)3=2
exp

�
�jv � Vinj2

2 � Tin

�
; (79)

where � > 1 is an additional parameter. Thus we are able to place arti�cially more

particles in the tail region of the prescribed distribution function. The parameter

cin 2 [0; 1] controls the proportion of such particles. The particles generated will

have di�erent weights corresponding to the following formula

gi = g
1

cin + (1� cin)f
�

M
(vi)=fM (vi)

: (80)
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Figure 12: \High" density region, Mach = 5:0
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Figure 13: \Low" density region, Mach = 5:0

We will use cin = 1=2 and � = 8 in all subsequent examples.

Fig. 12 shows the analytic expression for the density (76) (thick dashed line) and

the con�dence bands (thin lines) of the numerical solutions obtained with DSMC

(left plot) and SWPM (right plot) on the interval x2 2 [0:005; 0:6] :We see very good

agreement of the numerical solutions in the \high" density region for both methods.

In Fig. 13 we show the same values in the \low" density region x2 2 [0:88; 0:995] :

Here we can see that the results obtained using DSMC are reasonable but the

con�dence bands of SWPM are better. Thus some reduction of the variance is

achieved using weighted particles. The relative accuracy (i.e. the quotient of the

thickness of the con�dence bands and of the exact solution) is presented in Fig. 14.

Thus the DSMC scheme is slightly better in the \high" density region and SWPM

accuracy becomes much higher in the \low" density region, i.e. for x2 > 0:8 :

Now we choose the inow Mach number equal to 7:0 and show the results in the

subsequent Figs. 15{17. In the \low" density region we see only some uctuations

obtained using DSMC while the con�dence bands for SWPM are still good. Thus

an enormous reduction of the variance is achieved using weighted particles. Note

that the plot for the relative accuracy is restricted to the interval x2 2 [0:005; 0:8]
because the DSMC results do not allow one a stable computation of the con�dence

bands behind this point. Thus the DSMC scheme is again slightly better in the

\high" density region while it becomes unacceptable for x2 > 0:8 : In the next Fig.

18 we show the results for Mach number equal to 10:0 in the \low" density region

x2 2 [0:88; 0:995] only for SWPM. The DSMC results were identical to zero there.

The con�dence bands of SWPM is still rather good. Thus we have illustrated how
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Figure 14: The relative accuracy, Mach = 5:0
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Figure 15: \High" density region, Mach = 7:0
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Figure 16: \Low" density region, Mach = 7:0
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Figure 19: The course of the density, Mach = 7

an extremely low density can be resolved using weighted particles.

There is no analytic information in the presence of collisions. Thus in the last

Fig. 19 we show only the con�dence bands of DSMC (thin lines) and of SWPM

(thick lines) for Mach number equal to 7:0 and for Knudsen number equal to 0:1

(c.f. (6)).

The left plot shows the situation in the \high" density region x2 2 [0:005; 0:6] :

The low density region x2 2 [0:88; 0:995] is presented in the right plot. The results

were obtained using 1 000 smoothing steps. The number of particles in the DSMC

computation was 200 in spatial cells having density 1:0 : The corresponding number

was 50 for SWPM having in mind that the number of particles will increases during

the collision simulation step. The computational time for SWPM was about a half of

the DSMC time. Thus we see a considerable advantage of SWPM when computing

small functionals.

The spatial distribution of particles within the computational domain


 = (0:0; 2:0)� (�1:0; 1:0)

can be seen in next Figs. 20{21. The �rst �gure shows 25% randomly chosen

particles for DSMC (left plot) and for SWPM (right plot) for Mach number equal

to 5 while the second �gure demonstrates those particles for Mach number equal to

10. The thick solid vertical line indicates in these pictures the line (77).

The e�ect of better resolution in the physical space due to a better resolution in

the velocity space can be clearly seen for SWPM and for Mach number equal to 10

in Fig. 21 while for Mach number equal to 5 the situation is rather similar.
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Figure 20: Particles within the computational domain, Mach = 5:0
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Figure 21: Particles within the computational domain, Mach = 10:0
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