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Abstract

In this paper we continue the researches of hypothesis testing problems leading to
infinitely divisible distributions which have been started in the papers by Ingster,
1996a, 1997.

Let the n-dimensional Gaussian random vector z = £ 4 v is observed where £
is a standard n-dimensional Gaussian vector and v € R,, is an unknown mean. We
consider the minimax hypothesis testing problem H, : v = 0 versus alternatives
Hy :v € V,, where V, is [j-ball of radius R; , with [5-balls of radius R, removed.
We are interesting in the asymptotics (as n — o0o) of the minimax second kind
error probability G,(a) = Bn(a;p,q, Rin, R2pn) where o € (0,1) is a level of the
first kind error probability. Close minimax estimation problem had been studied
by Donoho and Johnstone (1994).

We show that the asymptotically least favorably priors in the problem of interest
are of the product type: 7" = m, X --+ X m,. Here m, = (1 — hy,)d + %"(5_1," +
0p—n) are the three-point measures with some h, = h,(p,q, Ri,, R2, and b, =
bn(p, ¢, R1ny R2n.  This reduces the problem of interest to Bayssian hypothesis
testing problems where the asymptotics of error probabilities had been studied by
Ingster, 1996a, 1997.

In particularly, if p < g, then the asymptotics of 3,a are of Gaussian type, but
if p > ¢ then its are either Gaussian or degenerate or belong to a special class of
infinitely divisible distributions which was described in Ingster, 1996a, 1997.



1 Introduction

1.1 Setting

Let n-dimensional Gaussian random vector x = £ + v is observed where £ is a
standard n-dimensional Gaussian vector with zero mean and unit covariance matrix
and v € R,, is an unknown mean. We test null hypothesis Hy : v = 0 versus the
alternative Hy : v € V,,, here V,, is [j-ball of radius R; ,, with [,-balls of radius Ry,
removed:

Vo =VPURy py Rap) = {v=(v1,...,0n) € R": Z lvi|P > Rﬁ’,n,z lvi|? < R{,.}
i=1 i=1

- (1.1)
where p € (0,00),q € (0,00] are given values and Ry, > 0,R,, > 0 are given
sequences of radiuses (with evident modifications for ¢ = 0o or p = oo; we consider
the case p < oo in this paper). We assume

Ry, <Ry, for p>g; Rl,nn_l/p < R2,nn_1/‘1 for p<gqg (1.2)

which imply that the sets V,, are nonempty.

We deal with asymptotically minimax hypothesis testing problem (see Ingster,
1993). Let ¥, , be the set of tests of level o, o € (0,1) ( the set of measurable
functions ¢ : R® — [0,1] ) such that a(¢) < a where a(y) = E, 0 is the first
kind error probability. Here and below F, , means the expectation with respect to
Gaussian measure P, , with the mean v and unit covariance matrix.

Let 5,(¢,v) = E, (1 — 9) be the second kind error probability and let

ﬁn(wa Vn) = sup ﬁn(wa U)

vEV,

be the maximum value of the second kind error probability for test ¥. Let

/Bn(a) = /Bn(a’ Vn) = inf /Bn(wa Vn) (1'3)

"/’E‘I’(naa)

be the minimax second kind error probability. It is clear that following inequalities
hold:

0<Bu(a)<1-—a.

We are interested in the dependence of the asymptotics of 3,(«) on p, g and on
the behavior of R, , and R, as n — oo for any a € (0,1) and in the structure of
asymptotically minimax tests 1, o such that

n(Yna) S a@+0(1),  Bn(¥na) < Bnla, Va) +o(1),

Here and below the asymptotic relations are understood as n — oo.



1.2 Discussion

The problem under consideration seems to be the most natural minimax hypothesis
testing problem of increasing dimension. Analogous minimax estimation problem
has been studied by Donoho and Johnstone (1994).

Close infinite dimensional problems of hypothesis testing were considered by
Ermakov (1990), by Ingster (1990, 1993, 1996b) and by Suslina (1993, 1996). It
was assumed that infinite dimensional Gaussian vector x = £+ v is observed where
v € ly and £ is a sequence of independent standard Gaussian variables. Alternatives
H, : v € V, correspond to a family of subsets V. € [, with asymptotic parameter
e — 0.

These papers deal with alternatives of the form [, -ellipsoids with [,-balls re-
moved:

={vel: Z [vi|? > (pe/€)* Z lv;/a;|" < e} (1.4)

Here {a;} is a given sequence of semi-exes of /,-ellipsoid for fixed orthonormal basis
in Ly which corresponds to the problem of detection of a signal in Gaussian white
noise; the factor € > 0 in (1.4) corresponds to normalization.

It is clear that the problem under consideration in this paper is the same as in
(1.4) for ”series scheme” with p./e = Ry, and a;/e = Ry, fori=1,...,n, a; =0
for i > n and we can try to use methods of Ingster (1996b) and Suslina (1996) to
this problem.

These methods are used for p < oo and reduce the considerable problem to the
extreme problem:

=inf{|| 7 || 7 € 1L} (1.5)

where II is the set of sequences ™ = (7, ..., m,,...) of probability measures m; on
the real line such that

Y B |u P> (pe/€)?, Y En | ufa; "< e?
and

7= lml=3 [ [ (e = Dmdumi(ao).
=1 i=1

Under some assumptions ( they are formulated in terms of the sequence 7, =
(et -+ Tem, - - .) which minimizes (1.5)) it is shown in Ingster (1996b) that anal-
ogous to (1.3) values G.(«) satisfy to the relation

Be(a) = Be(a, Pre) +0(1) = ®(ty — ue) + 0o(1), e — 0. (1.6)

Here (3.(«, Pre) is minimum second kind error probability of tests of the level « for
simple Bayesian alternative which corresponds to a mixture

P, = / Pn(dv) = [ / Poymei(dv)
i1/ B!



over product-measure 7€ = 73 X --- X Te; X --- and u, is defined by (1.5). Here
and below ® stands for distribution function of standard Gaussian low and ¢, for
this (1 — a)-quantile.

The relation (1.6) is based on the asymptotical normality of the log-likelihood
ratio log (dPr</dF)

The extreme problem (1.5) may be separated in ”one-dimensional” problem

oA v) =inf{ | = ||2: E,|u P> )X E,|uli<Vi} (1.7)

and in ”two-sequence” problem

u? = inf{ pr,q()\i,ui) : Z)\f = (pe/€)?, ZV? =€ P} (1.8)
i—1 i—1 i—1

(or ”one-sequence” problem if p = q).
These problems had been studied by Ingster, 1990, 1993 (the case p = ¢) and by
Suslina, 1996 (the case p # q and the power sequence of semi-axes a,, < n~* ¢ > 0).
In particular, it was shown that the solution of one-dimensional problem (1.7)
is the symmetrical three-point measure

ﬂam:41—m%+gwy+ag (1.9)

for some b = b(p,q, A, v) > 0,h = h(p,q, A, v) € (0,1]; here d, is Dirac mass at the
point b € R!.

More exactly, if A < v and p < q, then the set under constraints is empty. If
A > vor p > q, then there are the three possible equalities:

@)  h=1, b=
(i)  h=(\b,), b=b, (for p>2);
(i5)  hOP = X, hb? = 1.

Here the value b, > 0 for p > 2 is the root of the equation ptanhb?/2 = b?; this
value minimizes the function b7 sinh(b?/2).

Note that these relations imply equality in the first inequality (1.7). However
if the relation (iii) does not hold, then it is not possible the equality in the second
inequality in (1.7 and this inequality is not essential in the problem).

The relations between p, ¢, A, v and equalities (i), (ii) and (iii) are described by
following

Lemma 1.1 (Suslina, 1996)

1. Let p <2 and p < q. Then the relation (i) holds.

2. Let p <2 and p > q . Then the relation (i) holds, if A < v and the relation
(i) holds, if A > v.

3. Let co > p > 2 and p < q. Then the relation (i) holds, if X > b,; the relation
(ii) holds, if A < b, < (V7/AP)Y@P) for p < q or A < b, for p = q; the relation
(iii) holds, if A < b,, p < q, (V1/AP)Y/(@P) < b
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4. Let oo > p > 2 and p > q. Then the relation (i) holds, if b, < A\ < v; the
relation (ii) holds, if A > v and (A/b,)? < (v/b,)? orv > X and X < by; the relation
(iit) holds, if X\ > v and (A/b,)? > (v/by,)".

These results imply that
FoaA,v) = 2h2 sink? (5 2)

where b = b(p, g, \,v) and h = h(p, q, A, v) are described in Lemma 1 and if p < g,
then b, = O(1) for any sequences A, and v, such that f,,(An,v,) = O(1) as
n — oo.

The required to (1.6) assumptions may be formulated in terms of extreme se-
quences b = b.; and h. = h.; and they are checked for a power sequence of
semi-exes: a, < n ' as n — oo, t > 0. In particular, one of sufficient conditions is
that sup; b.; = O(1) as € — oo and it is fulfilled for p < ¢ if u. = O(1).

If we use these methods to the problem under consideration, then we obtain
the problem

Ui = ll'lf{ ZfP,Q(Aia Vi) : Z Af = R?L),rn Zyzq = Rg,n};
=1 =1 =1

which is analogous to (1.8). One can easily see that, by the symmetry,
uZ = nfpq(An, Vn) = 2nh? sinh?(b2 /2) (1.10)
where
An = Rl,n/nl/”, Up = R2,n/n1/q, b, = b(p,q, Ay Vn), hn = h(p,q, \nvy).

If b, = O(1) here, then the assumptions of Ingster (1996b) hold and we obtain the
relation which is analogous to (1.6):

Bn(a) = Bala, Pen) +0(1) = ®(ty — u,) +0(1), n — . (1.11)

Here u,, is defined in (1.10) and 7™ is the product measure:
" = 7" (b, hn) = H Tniy, Tni=Tn = T(bn, hn) (1.12)
i—1

where (b, h,,) are defined by (1.9).

In particularly, the relation (1.11) holds, if p < ¢. In fact, if u, = O(1), then
one can easily check, that b, = O(1). If b, — oo, then, by making R; , smaller,
one can reduce the consideration to the case of arbitrarily large b, = O(1) and
un, = O(1) which implies 3,(a) — 0. However if co > p > ¢, then it is possible
that b, — oo and u,, = O(1).

The goal of this paper is to study this case. We can use the results by Ingster
(1996b) in this case also, if b, = o(+/logn). However, if b, =< y/logn, then, as we
show below, the asymptotics (1.11) may not hold. If nh,, — oo, then the product
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priors (1.12) are the asymptotically least favorable also, however, as it follows from
Ingster, 1996a, 1997, the asymptotics of distributions of the log-likelihood ratios
log (dPn/dP, ) are not Gaussian, but degenerate or infinite divisible of the special
type. Note that analogous asymptotically least favorable product priors (1.12) arise
in Donoho and Johnstone (1994) for minimax estimation problem also.

The main considerations later assume oo > p > q, b, — oo which by Lemma
1.1 correspond to

or
R’ 1/(p—q) R, pq/(p—q)
bn — ,T , hn — —’n .
(7)o (52)

In fact, as it was noted above, the case p < ¢ < oo can be considered by the methods
of Ingster, 1993, 1996b and Suslina, 1996 and corresponds to the Gaussian case.
The case co = p > ¢ can be considered by the methods of Ingster, 1993, nn. 4.4,
5.4 and corresponds to degenerate case with b, = Ry ,, nh, = 1 (see the Theorem
3 later).

In the next section we remind the results in Bayesian problem and formulate
the analogous results for the problem under consideration. In sections 3 - 8 we give
the proofs.

2 Main results

Remind the results of Ingster, 1997 on the distributions of the log-likelihood ratios
for the product priors (1.12)

ln = ln(bn, hyy) = log (dPpn /dPy ) = Xn:log(l + hp&(zi,b,)) (2.14)

i=1
where
£(x,b) = exp(—b?/2) cosh bz — 1

and on the asymptotics of the values f,(a, Py=) in Bayesian problem .
If b,, — oo and h,, — 0, then define two sequences 7, and 7,,. Let 7,, is defined
by the relation
ho&(T, bn) =1+ o(1).

One can easily see that

by log2h7?
T, =4 2870 4 o). (2.15)
2 b
Put - log h1
n 1 n
Ta= =480 o) (2.16)

and assume without loss of generality that

Tn, = T € [1/2,00].
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Also if b, = O(1) or h,, < 1, then put 7 =00 .

It was shown in Ingster, 1996a, 1997, that there are three different types of
the limit distributions of the log-likelihood statistics (2.14) and three types of the
asymptotics of the second kind error probabilities 3, (a, Py») which correspond to
the three intervals of 7: 7 € [2,00] (Gaussian type), 7 € (1,2) (infinite-divisible
type) and 7 € (1/2,1] (degenerate type).

2.1 Gaussian case: 7 € [2, 0]

Put u, = +/u2 where
2nh2(sinh(b2 /2))?, if 7€ (2,00,
u? = (2.17)
Inh2eb®(T, — 2b,), ifr=2.
Then (Ingster, 1997, Theorem 1)
Bn(a, Pr,) = ®(toa — un) +0(1)

and if w, < 1, then the log-likelihood statistics [, in (2.14) are asymptotically
Gaussian N(—u2/2,u%/2) under the null hypothesis Hy and N(u?/2,u2/2) under
the Bayesian alternative Hy, z».

In considerable problem we have

Theorem 1 Let 7 > 2. Then
1. Lower bounds:

Bula, V) > ®(ty — u,) + o(1).

2. Upper bounds. Let us consider the sequences of the tests

Una = L, o7, JUfmax; o> Ha}- (2.18)

Here H,, is some sequence such that n®(Hy,) — 0, T, o = taUn —~ui~/2 IfT >3,
then l, = l, and if T < 3, then I, = ln(bn, hy) where the values by, hy, correspond
to p,q, Rn2 and changed R, ; = R,1(1 —b.%). Then a(¢na) = a+ o(1),

ﬂn(¢n,a, Vn) < q)(ta - 'Uzn) + 0(1)
It means that the sequence of the tests 1, o is asymptotically minimaz.

Corollary 2.1
1. Let p < q. Then

Bn(a, Vi) = (ta — un) + o(1).
2. Letp<gq, p<2. Then
B, Vi) = Brn(¥na, Va) + 0(1) = @(ta — @n) + o(1).
Here iy = nby/2 and po = 1j ., , where L, = (2n) 12 %" (22 —1) is the

sequence of xi-square tests.
It means that there is the unit family of tests which is asymptotically minimax

foranyp <gq, p <2, R,1, Ry».



Proof of the Corollary. By making R,, ; smaller, we can assume that u, = O(1).
The statement n.1 follows from the boundness b, in the case p < g by the Lemma
1.1. If p < 2 also, then h,, = 1. Note that u, ~ 4, in this case and the statement
n.2 follows from Ingster, 1993, n. 5.2.

2.2 Infinitely divisible case: 7 € (1,2)

Put ¢, = 2n®(—T,) and assume without loss of generality that ¢, — ¢ € [0, o0].
For 7 € (1,2) and ¢ € (0,00) let us define two independent infinitely divisible
random variables (° = ¢, and ¢* = (2, with the characteristic functions

12t

log @(z) = izy’ + [ (e —1— dLO(t 2.19
ogy(2) =iz + | (e 24 (), (2.19)
log o (2) = / (e — 1)dL~(t). (2.20)
+0
Here L = LY, and L® = L£, are the Levi spectral functions (see Petrov, 1981)
which are zero for t < 0 and for ¢t > 0
LO(t) = —c(e! — 1), (2.21)
LA(t) = —iLU(t) = - (et — 1)t . (2.22)
dt T—1
The constant 7° in (2.19) is defined by the relation
EC* =4+ /Oo e dL(t) = cI°(7)
o 1412

where

1°(r) = /0 “(log(1 + uY7) — u~YT)du,

This is equivalent to
Eexp(’=1.

Note that for the Levi spectral functions L = L° and L = L® one has from
(2.21) and (2.22) that

/ 2[PdL(z) < oo
|z|>1

for any p > 0 which implies that the random variables ¢° and (2 have finite
moments of any order. The distributions of (° and ¢ are absolutely continuous.
The support of (" is R but the support of (* is the positive halfline Rt = {¢t > 0}
(see Petrov (1981) for general theorems which imply these properties).

Let FO = F)_and F' = F__ be the distribution functions of ¢° and of ' =
or = C"+(¢* and let t°(a) =12 ,(a) be the (1—a)-quantile of ¢°: F(t°(a)) = 1—cv.

Then (Ingster, 1997, Theorem 2) the following relations hold.

1. If ¢ =0, then B,(a, Pr,) = 1 — a.

2. If ¢ = oo, then G,(a, Pr,) — 0.



3. Let ¢ € (0,00). Then I, — ¢° under P, - probability, I,, — ¢* under P, z»
- probability and
Bn(a, Pyr,) — F'(t°()).
In considerable problem we have

Theorem 2 Let 7 € (1,2). Then
1. Lower bounds:

ﬁn(aa Vn) > ﬁn(aa Pwn) + 0(1)'

2. Upper Bounds. Let us consider the sequences of the tests (21’{) where Hy,
is some sequence such that n®(H,) — 0, T, =1 (&) and ly = ly(bn, hn); here

the values I;n, Bn correspond to p,q, R, » and to changed Rn,l =R,1(1— b;3). Then
a(Vna) = a+o0(1),
Brn(Yn,a, V) < Bn(a, Pr,) +o(1).

It means that the sequence of the tests 1, o is asymptotically minimaz.

2.3 Degenerate case: 7 € [1/2,1]

Let nh,, — oco. Put
An = nh,®(b, — T},)

and assume without loss of generality that A, — A € [0, o0].
Then (Ingster, 1997, Theorem 3)
1. If A =0, then G,(a, Pr,) > 1 — a.
2. If A = o0, then B,(«, Pr,) — 0.
3. Let A € (0,00). Then [,, — —A under null hypothesis H, and

Bn(a, Pr,) — (1 — a)exp(—2A).
For considerable problem we have

Theorem 3
1. Lower bounds. Let T = 1.
a) Let nh, — oo ; also nh,/logn — oo or nh, is an integer. Then

Bn(e, Vo) = Bu(a, Pr,) +0(1) = (1 — ) exp(=An) + o(1).
b) Let nh, = O(1) and nh, is an integer. Then
Buler Va) = (1= @)(®(y/2logn — b)) +o(1).
2. Upper bounds. Let us consider the sequences of the tests
Vna = L{max; [ai[>Hn o} (2.23)

where Hy, o = v/2logn+o(1) is such sequence that (1 —2®(—H, o))" = 1—«a (this
implies a(VPn.q) = a).



a) Let T =1, nh, — co. Then
Bn(Una, Vo) < Bulay Pr,) +0(1) = (1 — &) exp(—A,) + o(1).

b) Let T =1, nh, = O(1). Then

Bu(¥na, Vi) < (1= a)(®(y/2logn — ba))™* + o(1).

3. Consistent properties. Let one of the following assumptions hold:
(i): T<1; (i): 7T=1and A\, = o0o; (ii): 7€ (1,00) and ¢, — 0.
Then for the tests (2.23) one has: By(Yna, Va) — 0 for any a € (0, 1).

Remark 2.1 1. The nn. 1,2 of the Theorem mean that for T = 1 the tests (2.23)
are asymptotically minimaz, if nh,/logn — oo or nh, is an integer.

2. The n. 3 of the Theorem means that for T < 2 the tests (2.23) are asymp-
totically consistent in minimaz sense, if it is possible to construct asymptotically
consistent sequence of tests.

3 Proof of the Theorems : lower bounds

To obtain the lower bounds we can assume: if 7 > 2, then w, < 1; if 7 € (1,2),
then ¢, =< 1. Note that these relations imply b2 = O(logn) and nh,/logn — oo
(see Ingster, 1997). For 7 = 1 assume A, < 1 and nh,/logn — oo or k,, = nh,, is
an integer. Note that b2 = O(logn) also in this case.

For an integer k = k,, let us consider the sets ffn = Vaknbn:

Vio={veER": v=0by(ts,... tn), i € {-1,0,1},i=1,...,n, > t; =k,}.

i=1
It is clear that Vn C V,, for k, = nh,, which implies the inequality
Ba(e, Vi) > Bu(a, V2). (3.24)
It was shown in Ingster, 1997, Theorem 4, that if k£, — oo, then
Bu(a, V) = Bu(a, Pr,) + o(1) (3.25)

and if k, = O(1), then

Bn(a, Vn) = (1 —a)(®(y/2logn — b,))* + o(1)

which imply the lower bounds of the Theorems 1-3 for an integer k,, = nh,,.
Let nh, is not integer, nh,/logn — oco. By making R,, smaller: R;m =
Ry (1 — d,,0), we can get an integer k, = nh); nh, > k, > nh, — 1 with

B = (1 = 6n1), b = bu(1 +62), Onp = On1 = Oz = O((nha) ) = 0

9



which implies the decrease 3,(a, V;,) only.

Analogous to the proof of the Theorem 4 in Ingster, 1997, let us observe the
following asymptotical continuity property of the values B,(«, P,,) which follows
from Theorems 1 - 3 in this paper.

Let

h: = hn((]_ — 6n’1), b:; = bn((]_ — 5n,2); 6n’1 = 0(1), 5n,2 = 0(b7_12)7 bn — 0.

n

Then for any o € (0,1)

ﬁn(aa PW"(b;,h;)) = ﬁn(aa Pﬂ'"(bn,hn)) + 0(1)

Using this continuity property and (3.24), (3.25) one has the lower bounds from
the Theorems, if b2 = O(nh,,). The last relation holds by nh,/logn — co. The
lower bounds are proved.

4 General remarks to the proofs of the upper
bounds

First, note that to prove the upper bounds of the Theorems 1-3 we can assume
b, — 0o by the results for b, = O(1) follow from Ingster, 1993. Also we can assume
that u, < 1, ¢, < 1, A, < 1 respectively (see the proof of the Theorem 1 in Ingster,
1997). These imply the relation (1.13).

Also remind some technical relations from Ingster, 1997. In the cases b, — oo
and u,, = O(1) or ¢, = O(1) or A, = O(1) one has

b2
T, — 00, h,—0, h,~ 2exp(5" — T,.by). (4.26)

Let us put
Zn(z) = hpé(z,by), wu(z) = log(l + z,(x))
and note that for any § > 0 and y = |z| —T,, > ¢ the following representations hold

zo(z) = V(1 +0(1)), wn(z) =log(l+e¥(1+0(1))), sup |wn(z)| — 0.

|z|<Tn—9d
(4.27)
Here and later we use the well know relations: as = — oo, § = o(x)
1
O(—z) ~ e ®(—z +68) ~ D(—z)e™ (4.28)
TV 2T
Define the function T, (t) by
wn(Tn(t)) =t, T.(t) >0. (4.29)

By wy,(|z|) is increasing in |z|, it follows from (4.27), (2.15) that for any ¢ > 0

To(t) = T + log(zg to (%) o wn(@) < 1} = (=To(0), Ta()).  (4.30)
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Remind (Ingster, 1997) that under the assumptions u, < 1 and 7 > 2 one has

logn log k., 271 — 3
2(r—1) BT (e =)

under the assumptions ¢, < 1 and 7 € (1,2) one has

n®(—T,) — 0; b2 ~ log n; (4.31)

2logn _
en = 2n®(—T,) < 1; b2 ~ = log nhy, ~ (1 — 7 1) logn; (4.32)

and under the assumptions A, < 1 and 7 = 1 one has
cn = 2n®(—T3,) = o(A,) — 0; b2 ~ 2logn, lognh, = o(1). (4.33)

Note that by the asymptotical normality of [, (Ingster, 1997, Theorem 1) and
continuity property we have the relations:

a+o(1), if n®(H,) — 0,
a+0(1) < a(Pn,a) < {Oz +26+0(1), if n®(H,) <.

By these relations to proof the upper bounds in the Theorems 1, 2 it is enough for
any § > 0 to estimate the second kind error probabilities £, (¢ o, Vi) for such tests
Yn.a = Un.ae that n®(H, ) < 4.

To estimate B, (¥n.q, Va) We use the inequality:

Bn(Yn,a,v) = P, (l < Tna,max|xl| <H,) < (4.34)
min{ P,(max |z;| < H,), Pv(ln <Tha)}-

Let us consider the probabilities P! = P,(max; |z;| < H,). Note that for any
§ > 0 there is such B > 0 that P! < § if any of the following two relations hold:

rnax|vl| > H, + B, ZCD lvi| — H,) > B. (4.35)

P = TI@®(H, ~ ) — ®(~H, — [ul)) < B(H, — max|u) < (- B), (1.36)
Py = JI0 = ®(=Hp + |vi]) = @(=Hn — [0:])) <
< I — ®(—H, + |vi])) < exp(— Z(I) —H, + |v])) < exp(—=B). (4.37)

i

By the relations (4.34) - (4.35) it is enough to estimate the probabilities
P,(l, <T,a.) ( or the probabilities P, (l < Th,) where I, =1, L s | < ) is

~

H,,-truncated l~n) for v € V, NV} where

Vg ={veR": rnax|v,| < B+ H,, ZCD lv;| — H,) < B} (4.38)
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for large enough B > 0 and Fln > H, > 0.

Introduce the values @,,. If 7 > 2, then put Q,, =T, — b, + d,, if 7 > 2, then
put@,, = T,,/2 (this corresponds to d,, = b, —T,,/2). Here d,, — oo is such sequence
that d,, = o(b,) (using (4.26), (4.31) one can check that these relations hold for
T =2also ). If 7 € (1,2), then put @, = nb,, n € (1,7).

Let us consider the sets

Voa = {veV,nVg: rnlax|vi| < Qn},

Ve = {veV,nVg: max|v| > Qn}.

Choose the values H,. Let 7 > 3. Put H, = y/2logn. By (4.31) one has
Qn — H,, = oo which implies V,,» = 0 in this case.

LetT € [2,3]. Using (4.31), (4.28) put H,, = T;, — t, /b, with such ¢, — oo that
n®(H,) — 0 and if 7 > 2, then ¢, = o(b,) and if 7 = 2, then ¢, = o(b,/d,,), 2d, =
2b, — T,,.

Let 7 € (1,2). Using (4.32) , (4.28) put H, = T,, + t(d) /by, for such () that
n®(H,) < 4.

Denote m,(v) the number of coordinates |v;| > Q..

Lemma 4.1 For any 7 € (1, 3] one has

sup m,(v) = o(nh,/b3).
vEVn,2

Proof of the Lemma. Assume that there is such sequence v = v™ € V,,, and
A > 0 that m,,(v(™) > Anh,b;3.

First, let 7 > 2. By H,, < T,, using (4.28) one has for large enough n and some
constant B > 0:

Z¢(|U,-| - H,) > m,(v)®(d, —b,) > Bb, ‘nh,, exp(—(by, ) /2)
> nh2eb®(T, — 2b,) = 2u? < 1

by if T,, — 2b, > —B for any B < oo (it corresponds to 7 > 2), then using (4.26)
one has

b2 hnetn ® (T, — 2b,) < bihy, exp(b2 + (b, — dn)?/2) =
= b} exp(—bp(d, — B) —d2/2) — 0

and if T,, — 2b, = —d,,/2 — oo, (it corresponds to 7 = 2), then
b hnet ®(—d,, /2) < bid= " exp(—(b, — d,)d,/2) — 0.
Let 7 € (1,2). By n®(—H,,) < 0 one has for some b > 0:
ZCI) lvg| — Hy) > by, (v)®(nb, — T,) <

= binhy, exp(—(Th — 1b,)%/2) > nT, e Ta/? < nd(~T,) < 1

12



by for n € (1,7)

hy' exp(=T;/2) < exp(—(Tn — bn)*/2) = o(exp(—(Tn — nbu)*/2)).

These relations contradict to the assumption v = v(™ € V2 which proves the
Lemma.

Put & = (9y,...,0,) where ¥; = v;lj,|<@,}- It is clear that o € V. Also if
v € V, 2, then using (1.13) and the Lemma 4.1 one has for large enough n :

v E Vn - Vf’q(Rl,na RZ,n)a Rl,n — -Rl,n(1 - br_;3)
by i
Z [#:]" > Z 0[P — M (v)(Ha + B)? > RY,, — o(nhbi™%) > Ry,

Note that the set X, , = {z € R™: l~n(x) < Ty} is convex and symmetrical on
any coordinate z;. Appling the Anderson’s lemma (see Ibragimov and Hasminskii,
1981) to coordinate cross-sections of the set X, o, we get the inequality P, (X, o <
P, 5(Xn o which implies for large enough n

Br(Yn,ar Vo) < min{d, sup Poy(ln < Thot (4.39)

'UEVn,Qn

where } }
Vig, ={veV,nVg: m_ax|vi| < Qn}

By the (4.39) later we deal with the estimation of the probabilities P, wlln < Tha)

(‘or the values P, (I, < Ty.) for H,-truncated statistics I, with H, > H,, ) for
vev, Q.- Lo simplicity we will omit often later the wave in the notations L., Vi
and so on.

5 Upper bounds for 7 > 2

For H,-truncated statistics I,, with H, = T, — tn/bn > H, ( H,=H,, ifr<3 )
and for v € V,, ¢, using (4.27), (4.30) one can assume

Wy, = sup |, ()| = wp(H,) — 0 (5.40)

where w,(z) = wn(z)1y, <z, are the H,-truncated items in the sum for I, =

Y Wn(z;). This implies the asymptotical (0,1)-normality of the statistics (I, —

mn)/(Dn)l/2 under P, ,)-probability for any sequence v™ € R" Here m, =
1y, (v™) and D, = Dn(v(”)) are the P, ,m-mean and P, ,)-variance of [.. Tt is to
obtain the relations:

AD,, = D, (v™) — D, (0) = o(Amy,,), (5.41)

Amy, = 1, (v™) — 10, (0) > 2nh2 sinh?(b2 /2)®(H,, — 2b,,). (5.42)
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In fact, the relations (5.40), (5.41) and the Central Limit Theorem (Petrov,

1981) imply that if Am, — oo, then [, — oo and if Am, = O(1), then [, is

(Amy,—u?2 /2, u2)-asymptotically Gaussian under P, ,-probability; ®(1,—2b,) ~

®(H, —b,) by the choosing H, and the right-hand side in (5.42) is u2(1 + o(1).

We have:

Am,
Un

P,y (ln < Tpo) = @ (ta - ) +0(1) < @ (ty — un) + 0(1).
To prove (5.41), (5.42) put

i) = [ () (@0(a + v) - dO(a))

o2(v) = /<H 22(z) (d®(z + v) — dB(z))

By (5.40) one has

h, /|z|<frn £(z, bn)E(z, v)dD(z),
h, /Wﬁng (2, b,)E (2, 0)d® ().

Am, = Z (™) + 0 (Z ag(vgn)) , (5.43)
AD, = O (Z ag(v§"’) +o(1).

Using the relations: if b — 0o, H — oo, H — |v| — 0o, then
/ H{(x,b){(x,v)d@(x) ~ 2sinh?(bv/2)®(H — b — |v|), (5.44)
z|<
/ H§2(x,bn)§(x,v)d<b(:ﬂ) < € sinh?(bv)®(H — 2b — |v])(1 + o(1)) (5.45)

one can check that

S o2el” =0 (S i)
and by (5.43) this implies (5.41). Also these imply that (5.40) follows from the
inequality

nf o~y 2 sinh?(b,v;/2)®(H, — b, — |vi|) > 2nh2 sinh?(b2 /2)®(H,, — 2b,,) (5.46)
v n,Qn

which follows from the

Lemma 5.1 Denote =, = ZEPY Ry, Ron, Qn) the set of the collections 7 =
(T4 .-y Tn) of the probability measures on (R',B):

w= 175 3 [lulrildu) > B, Y [ ultri(du) < R rill~Qa, Qul) = 1

[1]

Let the values hy,,, b, are defined by (1.13), p > q, Rin < Ra,, b, — oo and for
some d,,, § € (0,1) the following constraints hold:

by < Qn < (1—8)Hp+\/2H, b, — 362, Hy > 2by—d; dp — 00, dn = 0(by). (5.47)
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@u(r) = [ Gu(0)r(dv), Fu(r) = 3 u(rs)
where
d(v) = ¢n(v) = 2sinh®(b,v/2)®(H, — b, — |v|). (5.48)
Then for large enough n the following equality holds:

inf F,(7) = F,(7) = n®(m,) = nh,$(b,) (5.49)

TEE,

where

hn
P = (T ooy Ta)y T = (b, ba) = (1= ha)bo + (8, +0-,):

In particularly, for large enough n one has

inf 3" 6(vi) > nhag(bn). (5.50)

'UEVn,Qn i

Proof of the Lemma is given in sec. 8.

Note that the analogous to (5.49) equality for 7 > 2 and for ¢(v) =
2sinh?(b,v/2) (which formally corresponds to (5.47), (5.48) with H, = Q, = o)
follows from Ingster, 1990, 1993.

The Theorem 1 is proved.

6 Upper bounds for 7 € (1,2)

6.1 The outline of the proof

By (4.39) it is enough to show that for any sequence v™ € V,, 5. one has

n

limsup(P, yo (In < T2,() = Ba(e, Prr)) < 0. (6.51)

Put
L2(t) = —2®(—T,(t)), Ly(t) = L2(t) + AL,(t)

where the values T,,(t) are defined by (4.29) and

ALn(t) = —Z(Pl,vfn)(x: wn(z) > ) — Pro(z : wn(z) >t)> — (6.52)

)

= =2 (-Ta(0) + o)) + (=Tu(t) — [0{™]) — 28(~T (1)) -

i

It is clear that AL, (t) < 0. Also one can easily check that AL,(t) - 0 ast — oo
and for large enough n and any ¢, > 0 the functions AL,(¢) are bounded from
below on t > t, and their derivatives are positive and bounded on ¢ > t,. Thus the

15



set of the functions {AL,(t)} are equicontinuous in C[ty, c0) for any ¢, > 0 and we
can assume that for every ¢ > 0

AL,(t) — AL(t) (6.53)
where AL(t) is continuous on (0,00) and the properties of Levi spectrum hold:
AL(t) <0, AL(t) — 0 as t — oo, AL(t) nonincrease on ¢ > 0

and (we will show below) for any § > 0

§
t2dAL(t) < oo. (6.54)
+0
Put
=3 pni = 2k, 3 sinh? (b, 0™ /2)®(T;, — b, — |v™)). (6.55)

The outline of the proof is following. We show that if u, — oo, then [, — oo
under P, ,-probability. Let u, = O(1). Then, by pass to subsequence, we can
find such constant b > 0 that the limit P, ,w -distribution of the statistics [,, is
the distribution of the sum ¢ = ¢° + A¢. Here ¢° and A( are an independent
infinite divisible random variables. The variable ¢° corresponds to the limit Py-
distribution of the statistics [,, and is described in sec. 2.2. The variable A has
not Gaussian component also and is supported on the half-line (b, 00) (it means
that the characteristic function ¢a¢(z) of the A( is of the form:

log éac(z) = ibz + / ~ (exp(izt) — 1)dAL(Y). (6.56)
0
Then we obtain the relation
AL(t) = LA(t) + A(t), t >0 (6.57)

where LA2(t) is the Levi spectrum which has described by (2.22) and A(t), t > 0
is the Levi spectrum also:

A(t) <0, dA(£)/dt >0, A(t) — 0 as t — oo

and the relation (6.54) implies the analogous relation for A(t): for any § > 0

d
t2dA(t) < oo. (6.58)
+0

These relations imply the equality

(=G++n=C+n (6.59)

where the random variables (y, (%, n are independent, (' = ¢, + ¢? corresponds to
the limit distribution of /,, under the Bayesian alternatives P» and n > b > 0 with
the probability 1. By (6.59) and by the Theorem 2 in Ingster, 1997 one has

P,y (ln < T;(e)) < P(¢H < T (a)) + 0(1) = Bu(e, Prn) +0(1)

which imply (6.51) and the upper bounds of the Theorem 2.
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6.2 The study of the limit distribution of [,

To realize the outline above introduce the functions

= tni(t) = 2hn / 2| < To(t)€(z, ba)é(z, v™)dd (),
=3 02(t) =22 Y [ fo] < Tu(0)EX(z, bu)é(z, o) d(z)

and put

0% = 3 0% = 2R 3 sinh? (b, B(T, — 25, — o).

Using the relations (5.44), (5.45) and (4.28) one can check that
FAM)
Mniy if v; S Tn - bna
fin,i(1) :{ N bt | (n)| (6.60)
i (€8 — 1)1V V/ontlmme i ™) > T, — by,

and for large enough n

o (t) < Bai’i(et — 1)|Uf")|/bn+2an

n,i

( here and later we denote B some positive constants, may be, different, which do
not depend on n). Also one can check that

= o)
“ (.un z(t)

which imply for large enough n and small enough ¢ > 0 the relation

02(t) < Bua(t)(t + o1). (6.61)

it ™) < T, — by,
), if o] > T, — by,

Let us estimate the differences of the means and of the variances
AE‘n — En,v(n)ln - En,Olna Al)n - Dn,v(n)ln - Dn,Oln-

It is clear that

AE, =Y / wn(2)E (2, o) (). (6.62)

Denote

n,u(n) Z/U) d‘bl‘—i-’l) , no—Z/’u} d(I)
By E,oln = nEiow,(z) = O(1) it is clear that AD,, < AD, + o(1) and

AD, = D,y — Do = Z / w2 (2)E(z, )d®(z). (6.63)
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For any ¢ > 0 put
AE, = AEF(t) + AE- (t), AD, = AD(t) + AD_(t)

where the items with the index + and — correspond to the sums of the integrals
in (6.62) and (6.63) over the sets |z| > T,,(¢) and |z| < T,.(¢).
Let us obtain the relations

AE(t) = 0(1), ADi(t)=0(1), (6.64)
AE (t) = pu(t)(1+0(t+0(1))), (6.65)
AD;(t) = O(ua(t)). (6.66)
To obtain (6.64), note the equality:
2¢(z,v)d®(z) = d®(z + |v]) + d®(z — |v|) — 2dP(z) (6.67)

which implies the equality analogous to (6.52):
AET(t) = An(t) + Ba(t) — 2C,.(2) (6.68)
Here by (4.27), (4.30), (4.28) one has

), (
]L n _ '™
( ) (|vz( )| — Tn)/ u (110 1/bn) log(1 + u)du,
u>et—1

T, + |v; (n) n _ (n)

7 n

Cn(t) ~ CT/ 1 w” ) log(1 + u)du
u>et—
where the boundedness of the values A,(t), Bn(t), Cn(t) follows from the bound-
edness of the integrals above (for |v§")| /b < m < 7 by the definition of the set
V.0, ) and from the boundedness of the sums -; ®(—7, + |vz(")|) by (6.52), (6.53).
The boundedness of the values AD; (t) follows from the analogous estimations.
The relations (6.65), (6.66) follow from (6.61) and the relation log(1 4 z) =
z+0(2%) for -1+ B! <z < B.
Assume p,, — oo. Then by the boundedness of the values E, ¢l,, Dyol, and
from the relations (6.60), (6.62) - (6.66) one has

En’v(n)ln = l’[/n _> ij) Dn,v(")l’n S BEn’v(n)ln

and using the Chebyshev inequality one has I, — oo under P, ) -distribution.
Assume p,, = O(1). Let us obtain the relations:

nh_g)lozp (n){x wp(z) >t} = — — (Lo(t) + AL(t)) for any t > 0; (6.69)
%%HILIEOAD (t) =0, (6.70)
lim 1nf lim inf AE_(t) >0, (6.71)
lim ;gfo lim tirl:fo lim inf (AE; (t2) — AE_ (t1)) = 0. (6.72)
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By pass to subsequence in (6.71) one can assume that there exist the limit b > 0
of the left-hand side (6.71). Then the relations (6.69) - (6.72) imply that the limit
P, ,m-distribution of the statistics [, is the distribution of the sum ¢ = ¢° + A(.
In fact (see Petrov, 1981), (6.69) implies the necessary form of the Levi spectrums,
(6.70) and analogous relation (4.7) in Ingster, 1997 imply that the limit P, ,)-
distribution of [,, has no Gaussian component and (6.54) holds.

Let us consider the component . One has the equality: 7. = 7° + Ay where

for any ¢t > 0

S L

401+ 22

t 3

(6.73)
Let ¢t — 0 in (6.73). Then the relations (6.71), (6.54) imply that the limit of the
first item in right-hand side is nonnegative and the limit of the second item is 0.
Also by (6.69), (6.72) one can pass to the limit in the third item by :

oo T
dAL /
(x)+ ¢ 14+ x2

t t

lim dAL(z) = lim lim [ zdAL(z) =

t—0 Jo 1+.’L‘2 ta—011—0 Jg,

lim lim lim (AE, (&) — AE, (1)) = 0.

to—0t; —0 n—o0

These imply the equality

oo

+0 1—|—x2

Ay =b+ dAL(z)

which is equivalent to (6.56).

6.3 Proof of the (6.69) - (6.72)

The relation (6.69) follows from (6.53) and from the analogous relation (4.2) in
Ingster, 1997 for the limit P, g-spectrum Lg. The relations (6.60), (6.61) imply the
estimators
AD™(t) < Bo2(t) < Bun(t +0o(1))
which imply (6.70). The relation (6.71) follows from (6.65), (6.66), (6.60).
To prove (6.72) let us consider the equality

AE;(tZ) - AE‘rj(tl) = En,l(tla tZ) + z]n,Z(tla t2)

Here ¥, ,(t1,t2), { = 1,2 correspond to the sums of the items in (6.62) with such
i that [0 < A, (for [ = 1) and [\ € (An,Qu] (for I = 2) where A, =
6n/Tn, 00 — 0. By |€(z,v)] < 62(1+0(1))/2 for |v| < A,, |z| < T,(t2), using
(4.27), (4.30) one has for any ty > t; > 0:

Tn(t2)
S (b, t) < msg/T( * wn(@)|d2(@)(1 -+ 0(1)) ~
n tl
et1-1
(5307’/ | log(1 + w)|u="Vdu — 0 as n — co. (6.74)
et1—1
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To estimate X, 2(t1,t2) denote m,(A,) the number of the items in this sum. By
(1.13) one has

) < AC 42 0|7 < (b, /An) iy =< b6 nhy,

and by (4.32) for any €; > 0 one can choose such §,, = n~% and ¢, > €;/q that
mn(Ay,) < Bn'th, = o(n). (6.75)
By analogy with (6.52), (6.68) put
Yno(t1,ta) = An(t, ta) + Bu(ty, ta) — 2C,(t1, t2)

where A, B, C are the sums which correspond to the items in the right-hand side
of (6.67). By analogy with the estimation of the values AE;f(¢) one can obtain the
estimators: for any t, > ¢; > 0

Cplti,ta) < (14 0(1))ermy(An)n ¢y (t1,t2) — 0 as n — oo
where \
¢1(t1,t2) = /:11 |log(1 + u)|u~ " Vduy
and analogously B, (t1,t3) — 0. To estimate A,(¢1,%2) put
An(ti,te) = Apa(t, t2) + Ana(ts, t2).

Here the values A, (t1,%2), | = 1,2 correspond to the sums of the items in with
such i that |[v{™| € (A, b,(1 —¢€)] (for L = 1) and [v{™| € (ba(1 —€), Qu] (for I = 2)
where 0 < € < min(2 — 7, 27 — 2). Using (4.27), (4.30) (6.75) one has for small
enough to >t > 0:

Api(ty,ta) < Bmy,(An)b, " exp(— (T, — ba(1 — €))?/2)¢1(t1,t2) — 0 as n — oo
by for small enough ¢; > 0

mn(An)e—(Tn—bn(l—e))2/2 < mn(An)e_ebg(Tn_1_e/2)

0.
b, nhy, by, -

Also one has for small enough to > ¢; > 0:

Ang(tl,t2)<Bn(b (tl,tg) B, <BZ(I)T —|’U |):O(1) asn — oo

where

et1—1 t
Ge(t1,t2) = / | log(1 + u)|u™"9du < Cut T du
et1—1

t1

and by the choosing €
lim lim ¢.(¢,%2) — 0.

to—01t1—0
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The estimators above imply (6.72).

Now it is necessary to obtain the relation (6.57). By pass n — oo this relation
follows from the inequalities
A d d

where AL, is defined by (6.52) and (see Ingster, 1997, the relation (4.11))

AL, <L

L2 (t) = n(Pro(wn(z) > t) — P, (wa(z) > 1)) — L2(1).
The following Lemmas imply the inequalities (6.76).

Lemma 6.1 Let us change the constraints (5.47) of the Lemma 5.1 onto following:
for some B > 1

H, — b, >dy — 00, BH, > Qn > bn; (6.77)
and change the functionals (5.48) onto
é(v) = ®(—H, +v) + ®(—H, —v) — 20(—H,). (6.78)

Then for large enough n the equality (5.49) and the inequality (5.50) hold.
Lemma 6.2 Let us change the constraints (5.47) of the Lemma 5.1 onto following:
H,—b,>d, — o0, (2—6§H,—b,>Q, > by; (6.79)
and change the functionals (5.48) onto
¢(v) = exp(—(H, — v)?/2) + exp(—(H, + v)?/2) — 2exp(—H>/2). (6.80)
Then for large enough n the equality (5.49) and the inequality (5.50) hold.

Proof of the Lemmas is given in sec 8.
The upper bounds of the Theorem 2 are proved.

7 The study of the tests (2.23): upper bounds
and consistent properties

Put Ao = Ana(bn bn) = nha®(by — Ho).

Lemma 7.1
1. Assume (i): b, — Hyo — 00; or (i1): nh, — oo and A, — 0o. Then

Bn(lpn,aa Vn) — 0.
2. Assume nh, — 00 and A\, o = O(1). Then

/Bn(wn,aa Vn) < (1 - a) eXp(_)\n,a) + 0(1). (7.81)
3. Assume nh, = O(1). Then
B(Wna, Vi) < (1 — @)@(y/2logn — b,)""* + o(1). (7.82)
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Proof of the Lemma. By p > q one has for all v € V,

Ry, < > uilP < max P ]t < max [0i[PIRY, 5.
i i

This relations and (1.13) imply

inf max|vi| > b, = (RE,/R2,)"00. (7.83)

veEV, @

In analogy with (4.36) using (7.83) one has

ﬁn(wn,a; Vn) S (D(Hn,a - 111‘; max |vz|) S (I)(Hn,a - bn) — 0
VEVR )

as b, — H, , — .
Let nh,, — oco. One can assume that

H,o > b, + d, for some sequence d,, — oo, d,, = o(by,). (7.84)
In fact, put V,,(t) = VP4(tR,1,tR,2), t € (0,1) and note that

Bn(wn,aa Vn) S Bn(wn,a’ Vn(t))

One can get this relation from the proof of Anderson’s lemma (see Ibragimov and
Hasminskii, 1981). The direct proof follows from the equality (in analogy with
(4.37) )

Bn(Wna,v) = [ (1 = @(Hna = |vil) = ©(—Hn o — [vi])) (7.85)

(2

and from the decrease on |v;| of the functions under the product. The set V,,(¢) is
corresponding to the values h,,(t) = hy,, b,(t) = tb,. Thus, if limsup H,, ,—b, < oo,
then one can choose such ¢ = ¢, < 1 that (7.84) holds and A, 4(bn(tr), hn) — co.
Put Q, = Hpo +d,/2. Assume v € V,,, max; |v;| > Q. Then B,(¥na, Vo) = 0
by (4.36).
Assume v € V,,, max; |v;| < Q,. Then using (7.85) one has

ﬁn('lpn,aa U) = (1 - a) H (1 - 1 gi(g)(g’(f[;{’:?a)> (7'86)

F(v,Hpq)
1—2®(—H,,)

< (1-a)exp (—
where
F(v,H) = Z¢(%H), o, H)=D(—H +1t)+P(—H —t) — 20(—H).
Using the Lemma 6.1 for H, = H, , one has F(v,,Hp o) > An o which imply
Brn(Vna,v) < (1 — a)exp(—Anqo(l+0(1)).
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Let nh, = O(1). One can assume that H, , — b, = O(1). Then analogously to
(7.86) we have:

Bn(Vnayv) = (1 — a)exp(—F(v, Huga)), F(v,H) = Z(ﬁ(vi,H)

where

¢(v, H) = log <%) = log(®(H)—®(—H))—log(®(H—v)—®(—H—v)).
’ ’ (7.87)
Then the inequality (7.82) follows from the

Lemma 7.2 Let us change the constraints (5.47) of the Lemma 5.1 onto following:
H, —b,=0(1), b, + O(1) > Qp > by; (7.88)

and change the functionals (5.48) onto (7.87). Then for large enough n the equality
(5.49) and the inequality (5.50) hold.

Proof of the Lemma 7.2 is given in sec 8.
The Lemma 7.1 is proved.
The following Lemma which has been proved in Ingster, 1997.

Lemma 7.3 Let k,, = nh,, — oo.
1. Let 1, < 00, A, — 00. Then A, o — 00.
2. Let =1, Ax1. Then A\, = A, +0(1).

We get the upper bounds and consistent properties of the Theorem 3 from the
Lemmas 7.1, 7.3 and from the simple remark: if 7 € (1,00), then using (4.26) ,
(4.28) one has

T—1

Cn =20(=T,) ~ A\, = A\,
T

The Theorem 3 is proved.

8 Proof of the Lemmas 5.1-7.2

We give the outline of the proofs and omit some simple calculations.
The linear convex problems of minimization are considered in the Lemmas: to
minimized the functional

inf F(F); F(F)= é/gﬁ(v)m(dv)

TEE,

where the convex set =, = {7 = (rq, ..., )} of collections of the probability mea-
sures 7; on the real line is defined by the constraints: r;([—Qn,Qn] =1, i =1,...,n
and

ﬁ;/ﬁﬁl(v)ﬁ(dv) > Hy, f}/(ﬁg(v)ri(dv) < H,.
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Here the functions ¢ = ¢, are defined by (5.48), (6.78), (6.80), (7.87), ¢(t) =
¢(—t) > 0, ¢(0) = 0 and ¢1(v) = [v]P, ¢2(v) = Jv|?, Hy = Hin = R, Hy =
Hg,n - Rg,n

By the symmetry of the problems one can find the infimum on the collections
7™ = (r*,...,r*) € E, of the equal symmetrical measures r*. Also using the method
of subdifferentials and the Theorem by Kuhn and Tucker (see, for example, Ioffe
and Tikhomirov (1976), pp. 76-77) one can get the sufficient conditions of infimum:
there exist such A = A, >0, u = u, >0, n=mn, that the following relations hold:

¢(v) = Ad1(v) + pge(v) = n for all v € [~Qn, Qn] (8.89)

and
r({v: ¢(v) = A1 (v) + ua(v) = n}) = 1. (8.90)
It is enough to check that r* = (b, h,) satisfies to (8.90) and (8.89) holds for some
A >0, u>0, n. The relation (8.90) implies the equality in (8.89) forv =0, v =5
and v=—-b; b=10b, - 00 as n — 0.
Put n =0 and

_ b'(0) —qd()  _ b9'(b) — po(h)
Pp—q) bi(p — q)

which imply the necessary equalities in (8.89). Thus we need to check the inequal-
ities: A > 0, pu > 0 and

qb¢,(b) — p¢(b) _(,U/b)p b¢,(b) — Q¢(b)
p—4q p—4q

A (8.91)

Y(v) = ¢(v)+(v/b) >0,0<v<Qn (892)

For large enough b = b, the inequalities A > 0, p > 0 follow from the relations:
¢'(b) > 0, n(b) = ¢(b)/bd'(b) = 0 as b — oco. (8.93)

The relations (8.93) hold under assumptions of the Lemmas.

By f(t)=(t?—t")/(p—q) >0, t € (0,1), f(1—2) ~ zasz—0and ¢(v) >0,
one can easily check that (8.92) holds, ifv € A,, = (0,b,,) where b,, = b,(1—Bn(b»))
for large enough B = B(p, q).

Fix small enough § > 0. Assume @, > b = b, + dd,, (this is possible under
assumptions of the Lemmas 5.1-6.2) and v € A} = [b}, Q,]. To satisfy (8.92) for
v € A it is enough the following : for some B > 0

Bb, > Qn, ¢(v) > (b)), ve An; b0 (b,)/d(b)) — 0 as b, —o0o.  (8.94)

Under assumptions of the Lemmas 5.1-6.2 using (4.28) one can easily check that
(8.94) hold. Note that the relation ¢(v) > ¢(b), v € A, in (8.94) follows from
the constraints on @,, in the Lemmas 5.1, 6.2 and from the increase of ¢(v) on v
in the Lemma 6.1.

Let v € A) = (b,,b}) where b}, = min(Qn,b;) (note that b} = Q, under the

assumptions of the Lemma 7.2). The relations (8.91) imply the tangency of the
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functions ¢ (v) and v = 0 at the point v = b,. The inequality (8.92) follows from
the convexity of 1 (v), v € A%, To convexity it is enough the following:

n

¢n = inf ¢"(v) >0, ¢(ba)/bad), — 0 as b, — oo . (8.95)
vEA,

One can easily check (8.95) under the assumption of the Lemmas. In fact,
¢! = ¢"(b,) under assumptions of the Lemmas 5.1-6.2; ¢! < ¢'(b,) < 1 under
assumptions of the Lemma 7.2.

The Lemmas are proved.
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