
Minimax detection of a signal for l
n

q
-balls with

l
n

p
-balls removed 1 2 3

Ingster Yu.I.4

11991 Mathematics Subject Classi�cation. Primary 62G10; Secondary 62G20
2Key words and phrases: minimax hypotheses testing, asymptotics of error probabil-

ities, in�nitely divisible distributions

3
Research was partially supported by Russian Fund of Fundamental Investigations

Grant 96-01-00-684, by the grant INTAS 93-1585 EXT and by Weierstrass Institute for

Applied Analysis and Stochastics

4
St.Petersburg Transport University, Dep. of Applied Mathematics, Moskowskii av.,

9, 190031, St.Petersburg, Russia



Abstract

In this paper we continue the researches of hypothesis testing problems leading to

in�nitely divisible distributions which have been started in the papers by Ingster,

1996a, 1997.

Let the n-dimensional Gaussian random vector x = � + v is observed where �

is a standard n-dimensional Gaussian vector and v 2 Rn is an unknown mean. We

consider the minimax hypothesis testing problem H0 : v = 0 versus alternatives

H1 : v 2 Vn, where Vn is lnq -ball of radius R1;n with l
n

p
-balls of radius R2;n removed.

We are interesting in the asymptotics (as n ! 1) of the minimax second kind

error probability �n(�) = �n(�; p; q; R1;n; R2;n) where � 2 (0; 1) is a level of the

�rst kind error probability. Close minimax estimation problem had been studied

by Donoho and Johnstone (1994).

We show that the asymptotically least favorably priors in the problem of interest

are of the product type: �n = �n � � � � � �n. Here �n = (1 � hn)�0 +
hn

2
(��bn +

�b�n) are the three-point measures with some hn = hn(p; q; R1;n; R2;n and bn =

bn(p; q; R1;n; R2;n. This reduces the problem of interest to Bayssian hypothesis

testing problems where the asymptotics of error probabilities had been studied by

Ingster, 1996a, 1997.

In particularly, if p � q, then the asymptotics of �n� are of Gaussian type, but

if p > q then its are either Gaussian or degenerate or belong to a special class of

in�nitely divisible distributions which was described in Ingster, 1996a, 1997.



1 Introduction

1.1 Setting

Let n-dimensional Gaussian random vector x = � + v is observed where � is a

standard n-dimensional Gaussian vector with zero mean and unit covariance matrix

and v 2 Rn is an unknown mean. We test null hypothesis H0 : v = 0 versus the

alternative H1 : v 2 Vn, here Vn is lnq -ball of radius R1;n with l
n

p
-balls of radius R2;n

removed:

Vn = V
p;q

n
(R1;n; R2;n) = fv = (v1; : : : ; vn) 2 Rn :

nX
i=1

jvijp � R
p

1;n;

nX
i=1

jvijq � R
q

1;ng

(1.1)

where p 2 (0;1); q 2 (0;1] are given values and R1;n > 0; R2;n > 0 are given

sequences of radiuses (with evident modi�cations for q =1 or p =1; we consider

the case p <1 in this paper). We assume

R1;n � R2;n for p > q; R1;nn
�1=p � R2;nn

�1=q for p � q (1.2)

which imply that the sets Vn are nonempty.

We deal with asymptotically minimax hypothesis testing problem (see Ingster,

1993). Let 	n;� be the set of tests of level �, � 2 (0; 1) ( the set of measurable

functions  : Rn ! [0; 1] ) such that �( ) � � where �( ) = En;0 is the �rst

kind error probability. Here and below En;v means the expectation with respect to

Gaussian measure Pn;v with the mean v and unit covariance matrix.

Let �n( ; v) = En;v(1�  ) be the second kind error probability and let

�n( ; Vn) = sup
v2Vn

�n( ; v)

be the maximum value of the second kind error probability for test  . Let

�n(�) = �n(�; Vn) = inf
 2	(n;�)

�n( ; Vn) (1.3)

be the minimax second kind error probability. It is clear that following inequalities

hold:

0 � �n(�) � 1� �:

We are interested in the dependence of the asymptotics of �n(�) on p; q and on

the behavior of R1;n and R2;n as n!1 for any � 2 (0; 1) and in the structure of

asymptotically minimax tests  n;� such that

�n( n;�) � � + o(1); �n( n;�) � �n(�; Vn) + o(1):

Here and below the asymptotic relations are understood as n!1.
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1.2 Discussion

The problem under consideration seems to be the most natural minimax hypothesis

testing problem of increasing dimension. Analogous minimax estimation problem

has been studied by Donoho and Johnstone (1994).

Close in�nite dimensional problems of hypothesis testing were considered by

Ermakov (1990), by Ingster (1990, 1993, 1996b) and by Suslina (1993, 1996). It

was assumed that in�nite dimensional Gaussian vector x = �+v is observed where

v 2 l2 and � is a sequence of independent standard Gaussian variables. Alternatives
H1 : v 2 V� correspond to a family of subsets V� 2 l2 with asymptotic parameter

�! 0.

These papers deal with alternatives of the form lq-ellipsoids with lp-balls re-

moved:

V� = fv 2 l2 :
1X
i=1

jvijp � (��=�)
p
;

1X
i=1

jvi=aijq � �
�qg: (1.4)

Here faig is a given sequence of semi-exes of lq-ellipsoid for �xed orthonormal basis
in L2 which corresponds to the problem of detection of a signal in Gaussian white

noise; the factor � > 0 in (1.4) corresponds to normalization.

It is clear that the problem under consideration in this paper is the same as in

(1.4) for "series scheme" with ��=� = R1;n and ai=� = R2;n for i = 1; : : : ; n, ai = 0

for i > n and we can try to use methods of Ingster (1996b) and Suslina (1996) to

this problem.

These methods are used for p <1 and reduce the considerable problem to the

extreme problem:

u
2
�
= inffk � k2: � 2 ��g (1.5)

where �� is the set of sequences � = (�1; : : : ; �n; : : :) of probability measures �i on

the real line such that

1X
i=1

E�i j u jp� (��=�)
p
;

1X
i=1

E�i j u=ai jq� �
�p

and

k � k2=
1X
i=1

k �i k2=
1X
i=1

Z
R1

Z
R1
(euv � 1)�i(du)�i(dv):

Under some assumptions ( they are formulated in terms of the sequence �� =

(��;1; : : : ; ��;n; : : :) which minimizes (1.5)) it is shown in Ingster (1996b) that anal-

ogous to (1.3) values ��(�) satisfy to the relation

��(�) = ��(�; P��) + o(1) = �(t� � u�) + o(1); �! 0: (1.6)

Here ��(�; P��) is minimum second kind error probability of tests of the level � for

simple Bayesian alternative which corresponds to a mixture

P�� =

Z
Pv�

�(dv) =
1Y
i=1

Z
R1
P1;v��;i(dv)
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over product-measure �� = ��;1 � � � � � ��;i � � � � and u� is de�ned by (1.5). Here

and below � stands for distribution function of standard Gaussian low and t� for

this (1� �)-quantile.

The relation (1.6) is based on the asymptotical normality of the log-likelihood

ratio log (dP��=dP0)

The extreme problem (1.5) may be separated in "one-dimensional" problem

fp;q(�; �) = inff k � k2: E� j u jp� �
p
; E� j u jq� �

qg; (1.7)

and in "two-sequence" problem

u
2
�
= inff

1X
i=1

fp;q(�i; �i) :
1X
i=1

�
p

i
= (��=�)

p
;

1X
i=1

�
q

i
= �

�pg (1.8)

(or "one-sequence" problem if p = q).

These problems had been studied by Ingster, 1990, 1993 (the case p = q) and by

Suslina, 1996 (the case p 6= q and the power sequence of semi-axes an � n
�t
; t > 0).

In particular, it was shown that the solution of one-dimensional problem (1.7)

is the symmetrical three-point measure

�(b; h) = (1� h)�0 +
h

2
(�b + ��b) (1.9)

for some b = b(p; q; �; �) > 0; h = h(p; q; �; �) 2 (0; 1]; here �b is Dirac mass at the

point b 2 R1.

More exactly, if � < � and p � q, then the set under constraints is empty. If

� � � or p > q, then there are the three possible equalities:

(i) h = 1; b = �;

(ii) h = (�=bp)
p
; b = bp (for p > 2);

(iii) hb
p = �

p
; hb

q = �
q
:

Here the value bp > 0 for p > 2 is the root of the equation p tanh b2=2 = b
2; this

value minimizes the function b�p sinh(b2=2).

Note that these relations imply equality in the �rst inequality (1.7). However

if the relation (iii) does not hold, then it is not possible the equality in the second

inequality in (1.7 and this inequality is not essential in the problem).

The relations between p; q; �; � and equalities (i), (ii) and (iii) are described by

following

Lemma 1.1 (Suslina, 1996)
1. Let p � 2 and p � q. Then the relation (i) holds.
2. Let p � 2 and p > q . Then the relation (i) holds, if � < � and the relation

(iii) holds, if � � �.
3. Let 1 > p > 2 and p � q. Then the relation (i) holds, if � > bp; the relation

(ii) holds, if � � bp � (�q=�p)1=(q�p) for p < q or � � bp for p = q; the relation
(iii) holds, if � � bp; p < q, (�q=�p)1=(q�p) � bp.
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4. Let 1 > p > 2 and p > q. Then the relation (i) holds, if bp < � < �; the
relation (ii) holds, if � � � and (�=bp)

p � (�=bp)
q or � > � and � < bp; the relation

(iii) holds, if � � � and (�=bp)
p
> (�=bp)

q.

These results imply that

fp;q(�; �) = 2h2 sinh2(b2=2)

where b = b(p; q; �; �) and h = h(p; q; �; �) are described in Lemma 1 and if p � q,

then bn = O(1) for any sequences �n and �n such that fp;q(�n; �n) = O(1) as

n!1.

The required to (1.6) assumptions may be formulated in terms of extreme se-

quences b� = b�;i and h� = h�;i and they are checked for a power sequence of

semi-exes: an � n
�t as n!1, t > 0. In particular, one of su�cient conditions is

that sup
i
b�;i = O(1) as �!1 and it is ful�lled for p � q if u� = O(1).

If we use these methods to the problem under consideration, then we obtain

the problem

u
2
n
= inff

nX
i=1

fp;q(�i; �i) :
nX
i=1

�
p

i = R
p

1;n;

nX
i=1

�
q

i = R
q

2;ng;

which is analogous to (1.8). One can easily see that, by the symmetry,

u
2
n
= nfp;q(�n; �n) = 2nh2

n
sinh2(b2

n
=2) (1.10)

where

�n = R1;n=n
1=p
; �n = R2;n=n

1=q
; bn = b(p; q; �n; �n); hn = h(p; q; �n�n):

If bn = O(1) here, then the assumptions of Ingster (1996b) hold and we obtain the

relation which is analogous to (1.6):

�n(�) = �n(�; P�n) + o(1) = �(t� � un) + o(1); n!1: (1.11)

Here un is de�ned in (1.10) and �n is the product measure:

�
n = �

n(bn; hn) =
nY
i=1

�n;i; �n;i = �n = �(bn; hn) (1.12)

where �(bn; hn) are de�ned by (1.9).

In particularly, the relation (1.11) holds, if p � q. In fact, if un = O(1), then

one can easily check, that bn = O(1). If bn ! 1, then, by making R1;n smaller,

one can reduce the consideration to the case of arbitrarily large bn = O(1) and

un = O(1) which implies �n(�) ! 0. However if 1 > p > q, then it is possible

that bn !1 and un = O(1).

The goal of this paper is to study this case. We can use the results by Ingster

(1996b) in this case also, if bn = o(
p
logn). However, if bn �

p
logn, then, as we

show below, the asymptotics (1.11) may not hold. If nhn !1, then the product
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priors (1.12) are the asymptotically least favorable also, however, as it follows from

Ingster, 1996a, 1997, the asymptotics of distributions of the log-likelihood ratios

log (dP�n=dP0;n) are not Gaussian, but degenerate or in�nite divisible of the special

type. Note that analogous asymptotically least favorable product priors (1.12) arise

in Donoho and Johnstone (1994) for minimax estimation problem also.

The main considerations later assume 1 > p > q; bn ! 1 which by Lemma

1.1 correspond to

nhnb
p

n
= R

p

n;1; nhnb
q

n
= R

q

n;2 (1.13)

or

bn =

 
R
p

1;n

R
q

2;n

!1=(p�q)
; nhn =

 
R2;n

R1;n

!
pq=(p�q)

:

In fact, as it was noted above, the case p < q � 1 can be considered by the methods

of Ingster, 1993, 1996b and Suslina, 1996 and corresponds to the Gaussian case.

The case 1 = p � q can be considered by the methods of Ingster, 1993, nn. 4.4,

5.4 and corresponds to degenerate case with bn = R1;n; nhn = 1 (see the Theorem

3 later).

In the next section we remind the results in Bayesian problem and formulate

the analogous results for the problem under consideration. In sections 3 - 8 we give

the proofs.

2 Main results

Remind the results of Ingster, 1997 on the distributions of the log-likelihood ratios

for the product priors (1.12)

ln = ln(bn; hn) = log (dP�n=dP0;n) =
nX
i=1

log(1 + hn�(xi; bn)) (2.14)

where

�(x; b) = exp(�b2=2) cosh bx� 1

and on the asymptotics of the values �n(�; P�n) in Bayesian problem .

If bn !1 and hn ! 0, then de�ne two sequences Tn and �n. Let Tn is de�ned

by the relation

hn�(Tn; bn) = 1 + o(1):

One can easily see that

Tn =
bn

2
+
log 2h�1

n

bn
+ o(b�1

n
): (2.15)

Put

�n =
Tn

bn
=

1

2
+
log h�1

n

b2
n

+ o(1) (2.16)

and assume without loss of generality that

�n ! � 2 [1=2;1]:
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Also if bn = O(1) or hn � 1, then put � =1 .

It was shown in Ingster, 1996a, 1997, that there are three di�erent types of

the limit distributions of the log-likelihood statistics (2.14) and three types of the

asymptotics of the second kind error probabilities �n(�; P�n) which correspond to

the three intervals of � : � 2 [2;1] (Gaussian type), � 2 (1; 2) (in�nite-divisible

type) and � 2 (1=2; 1] (degenerate type).

2.1 Gaussian case: � 2 [2;1]

Put un = +
q
u2
n
where

u
2
n
=

8><
>:
2nh2

n
(sinh(b2

n
=2))2; if � 2 (2;1] ,

1
2
nh

2
n
e
b
2
n�(Tn � 2bn); if � = 2 .

(2.17)

Then (Ingster, 1997, Theorem 1)

�n(�; P�n) = �(t� � un) + o(1)

and if un � 1, then the log-likelihood statistics ln in (2.14) are asymptotically

Gaussian N(�u2
n
=2; u2

n
=2) under the null hypothesis H0 and N(u2

n
=2; u2

n
=2) under

the Bayesian alternative Hn;�n.

In considerable problem we have

Theorem 1 Let � � 2. Then
1. Lower bounds:

�n(�; Vn) � �(t� � un) + o(1):

2. Upper bounds. Let us consider the sequences of the tests

 n;� = 1
f
~ln>Tn;�g[fmaxi jxij>Hng

: (2.18)

Here Hn is some sequence such that n�(Hn)! 0, Tn;� = t�un � u
2
n
=2 . If � > 3,

then ~ln = ln and if � � 3, then ~ln = ln(~bn; ~hn) where the values ~bn; ~hn correspond
to p; q; Rn;2 and changed ~Rn;1 = Rn;1(1� b

�3
n
). Then �( n;�) = � + o(1),

�n( n;�; Vn) � �(t� � un) + o(1):

It means that the sequence of the tests  n;� is asymptotically minimax.

Corollary 2.1

1. Let p � q. Then

�n(�; Vn) = �(t� � un) + o(1):

2. Let p � q; p � 2. Then

�n(�; Vn) = �n( n;�; Vn) + o(1) = �(t� � ~un) + o(1):

Here ~u2
n
= nb

4
n
=2 and  n;� = 1

f~ln>t�g
where ~ln = (2n)�1=2

P
n

i=1(x
2
i
� 1) is the

sequence of xi-square tests.
It means that there is the unit family of tests which is asymptotically minimax

for any p � q; p � 2; Rn;1; Rn;2.
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Proof of the Corollary. By making Rn;1 smaller, we can assume that un = O(1).

The statement n.1 follows from the boundness bn in the case p � q by the Lemma

1.1. If p � 2 also, then hn = 1. Note that un � ~un in this case and the statement

n.2 follows from Ingster, 1993, n. 5.2.

2.2 In�nitely divisible case: � 2 (1; 2)

Put cn = 2n�(�Tn) and assume without loss of generality that cn ! c 2 [0;1].

For � 2 (1; 2) and c 2 (0;1) let us de�ne two independent in�nitely divisible

random variables �0 = �
0
c;�

and �� = �
�
c;�

with the characteristic functions

log'0(z) = iz

0 +

Z
1

+0
(eizt � 1� izt

1 + t2
)dL0(t); (2.19)

log'�(z) =

Z
1

+0
(eizt � 1)dL�(t): (2.20)

Here L0 = L
0
c;�

and L� = L
�
c;�

are the Levi spectral functions (see Petrov, 1981)

which are zero for t < 0 and for t > 0

L
0(t) = �c(et � 1)�� ; (2.21)

L
�(t) = � d

dt
L
0(t) = � c

� � 1
(et � 1)1�� : (2.22)

The constant 
0 in (2.19) is de�ned by the relation

E�
0 = 


0 +

Z
1

0

t
3

1 + t2
dL

0(t) = cI
0(�)

where

I
0(�) =

Z
1

0
(log(1 + u

�1=� )� u
�1=� )du:

This is equivalent to

E exp �0 = 1:

Note that for the Levi spectral functions L = L
0 and L = L

� one has from

(2.21) and (2.22) that Z
jxj>1

jxjpdL(x) <1

for any p > 0 which implies that the random variables �0 and �
� have �nite

moments of any order. The distributions of �0 and �� are absolutely continuous.

The support of �0 is R1 but the support of �� is the positive hal
ine R1
+ = ft � 0g

(see Petrov (1981) for general theorems which imply these properties).

Let F 0 = F
0
c;�

and F
1 = F

1
c;�

be the distribution functions of �0 and of �1 =

�
1
c;�

= �
0+�� and let t0(�) = t

0
c;�
(�) be the (1��)-quantile of �0: F 0(t0(�)) = 1��.

Then (Ingster, 1997, Theorem 2) the following relations hold.

1. If c = 0, then �n(�; P�n)! 1� �.

2. If c =1, then �n(�; P�n)! 0.
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3. Let c 2 (0;1). Then ln ! �
0 under Pn;0 - probability, ln ! �

1 under Pn;�n

- probability and

�n(�; P�n)! F
1(t0(�)):

In considerable problem we have

Theorem 2 Let � 2 (1; 2). Then
1. Lower bounds:

�n(�; Vn) � �n(�; P�n) + o(1):

2. Upper Bounds. Let us consider the sequences of the tests (2.17) where Hn

is some sequence such that n�(Hn)! 0, Tn;� = t
0
c;�
(�) and ~ln = ln(~bn; ~hn); here

the values ~bn; ~hn correspond to p; q; Rn;2 and to changed ~Rn;1 = Rn;1(1� b�3n ). Then
�( n;�) = � + o(1),

�n( n;�; Vn) � �n(�; P�n) + o(1):

It means that the sequence of the tests  n;� is asymptotically minimax.

2.3 Degenerate case: � 2 [1=2; 1]

Let nhn !1. Put

�n = nhn�(bn � Tn)

and assume without loss of generality that �n ! � 2 [0;1].

Then (Ingster, 1997, Theorem 3)

1. If � = 0, then �n(�; P�n)! 1� �.

2. If � =1, then �n(�; P�n)! 0.

3. Let � 2 (0;1). Then ln ! �� under null hypothesis H0 and

�n(�; P�n)! (1� �) exp(��):

For considerable problem we have

Theorem 3

1. Lower bounds. Let � = 1.
a) Let nhn !1 ; also nhn= logn!1 or nhn is an integer. Then

�n(�; Vn) � �n(�; P�n) + o(1) = (1� �) exp(��n) + o(1):

b) Let nhn = O(1) and nhn is an integer. Then

�n(�; Vn) � (1� �)(�(
q
2 logn� bn))

nhn + o(1):

2. Upper bounds. Let us consider the sequences of the tests

 n;� = 1fmaxi jxij>Hn;�g
: (2.23)

where Hn;� =
p
2 logn+ o(1) is such sequence that (1� 2�(�Hn;�))

n = 1�� (this
implies �( n;�) = �).
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a) Let � = 1; nhn !1. Then

�n( n;�; Vn) � �n(�; P�n) + o(1) = (1� �) exp(��n) + o(1):

b) Let � = 1; nhn = O(1). Then

�n( n;�; Vn) � (1� �)(�(
q
2 logn� bn))

nhn + o(1):

3. Consistent properties. Let one of the following assumptions hold:
(i): � < 1; (ii): � = 1 and �n !1; (iii): � 2 (1;1) and cn !1.
Then for the tests (2.23) one has: �n( n;�; Vn)! 0 for any � 2 (0; 1).

Remark 2.1 1. The nn. 1,2 of the Theorem mean that for � = 1 the tests (2.23)
are asymptotically minimax, if nhn= logn!1 or nhn is an integer.

2. The n. 3 of the Theorem means that for � < 2 the tests (2.23) are asymp-
totically consistent in minimax sense, if it is possible to construct asymptotically
consistent sequence of tests.

3 Proof of the Theorems : lower bounds

To obtain the lower bounds we can assume: if � � 2, then un � 1; if � 2 (1; 2),

then cn � 1. Note that these relations imply b2
n
= O(logn) and nhn= logn ! 1

(see Ingster, 1997). For � = 1 assume �n � 1 and nhn= logn!1 or kn = nhn is

an integer. Note that b2
n
= O(logn) also in this case.

For an integer k = kn let us consider the sets ~Vn = Vn;kn;bn:

~Vn = fv 2 Rn : v = bn(t1; : : : ; tn); ti 2 f�1; 0; 1g; i = 1; : : : ; n;
nX
i=1

ti = kng:

It is clear that ~Vn � Vn for kn = nhn which implies the inequality

�n(�; Vn) � �n(�; ~Vn): (3.24)

It was shown in Ingster, 1997, Theorem 4, that if kn !1, then

�n(�; ~Vn) = �n(�; P�n) + o(1) (3.25)

and if kn = O(1), then

�n(�; ~Vn) = (1� �)(�(
q
2 logn� bn))

kn + o(1)

which imply the lower bounds of the Theorems 1-3 for an integer kn = nhn.

Let nhn is not integer, nhn= logn ! 1. By making R2;n smaller: R
�

2;n =

R2;n(1� �n;0), we can get an integer kn = nh
�

n
; nhn > kn > nhn � 1 with

h
�

n
= hn(1� �n;1); b

�

n
= bn(1 + �n;2); �n;0 � �n;1 � �n;2 = O((nhn)

�1)! 0

9



which implies the decrease �n(�; ~Vn) only.

Analogous to the proof of the Theorem 4 in Ingster, 1997, let us observe the

following asymptotical continuity property of the values �n(�; P�n) which follows

from Theorems 1 - 3 in this paper.

Let

h
�

n
= hn((1� �n;1); b

�

n
= bn((1� �n;2); �n;1 = o(1); �n;2 = o(b�2

n
); bn ! 0:

Then for any � 2 (0; 1)

�n(�; P�n(b�
n
;h�
n
)) = �n(�; P�n(bn;hn)) + o(1):

Using this continuity property and (3.24), (3.25) one has the lower bounds from

the Theorems, if b2
n
= O(nhn). The last relation holds by nhn= logn ! 1. The

lower bounds are proved.

4 General remarks to the proofs of the upper

bounds

First, note that to prove the upper bounds of the Theorems 1-3 we can assume

bn !1 by the results for bn = O(1) follow from Ingster, 1993. Also we can assume

that un � 1; cn � 1; �n � 1 respectively (see the proof of the Theorem 1 in Ingster,

1997). These imply the relation (1.13).

Also remind some technical relations from Ingster, 1997. In the cases bn ! 1
and un = O(1) or cn = O(1) or �n = O(1) one has

Tn !1; hn ! 0; hn � 2 exp(
b
2
n

2
� Tnbn): (4.26)

Let us put

zn(x) = hn�(x; bn); wn(x) = log(1 + zn(x))

and note that for any � > 0 and y = jxj�Tn > � the following representations hold

zn(x) = e
bny(1 + o(1)); wn(x) = log(1 + e

bny(1 + o(1))); sup
jxj�Tn��

jwn(x)j ! 0:

(4.27)

Here and later we use the well know relations: as x!1; � = o(x)

�(�x) � 1

x
p
2�
e
�x2=2

; �(�x + �) � �(�x)ex� (4.28)

De�ne the function Tn(t) by

wn(Tn(t)) = t; Tn(t) � 0: (4.29)

By wn(jxj) is increasing in jxj, it follows from (4.27), (2.15) that for any t > 0

Tn(t) = Tn +
log(et � 1)

bn
+ o

�
1

bn

�
; fx : wn(x) < tg = (�Tn(t); Tn(t)): (4.30)
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Remind (Ingster, 1997) that under the assumptions un � 1 and � � 2 one has

n�(�Tn)! 0; b2
n
� logn

2(� � 1)
; lognhn �

2� � 3

4(� � 1)
logn; (4.31)

under the assumptions cn � 1 and � 2 (1; 2) one has

cn = 2n�(�Tn) � 1; b2
n
� 2 logn

� 2
; lognhn � (1� �

�1)2 logn; (4.32)

and under the assumptions �n � 1 and � = 1 one has

cn = 2n�(�Tn) = o(�n)! 0; b2
n
� 2 logn; lognhn = o(1): (4.33)

Note that by the asymptotical normality of ~ln (Ingster, 1997, Theorem 1) and

continuity property we have the relations:

� + o(1) � �( n;�) �
�
� + o(1); if n�(Hn)! 0,

� + 2� + o(1); if n�(Hn) � �.

By these relations to proof the upper bounds in the Theorems 1, 2 it is enough for

any � > 0 to estimate the second kind error probabilities �n( n;�; Vn) for such tests

 n;� =  n;�;� that n�(Hn) � �.

To estimate �n( n;�; Vn) we use the inequality:

�n( n;�; v) = Pv(~ln � Tn;�;max
i
jxij � Hn) � (4.34)

minfPv(max
i

jxij � Hn); Pv(~ln � Tn;�)g:

Let us consider the probabilities P 1
v
= Pv(maxi jxij � Hn). Note that for any

� > 0 there is such B > 0 that P 1
v
< � if any of the following two relations hold:

max
i

jvij > Hn +B;
X
i

�(jvij �Hn) > B: (4.35)

In fact,

P
1
v

=
Y
i

(�(Hn � jvij)� �(�Hn � jvij)) < �(Hn �max
i

jvij) � �(�B); (4.36)

P
1
v

=
Y
i

(1� �(�Hn + jvij)� �(�Hn � jvij)) <

<
Y
i

(1� �(�Hn + jvij)) < exp(�
X
i

�(�Hn + jvij)) � exp(�B): (4.37)

By the relations (4.34) - (4.35) it is enough to estimate the probabilities

Pv(~ln � Tn;�) ( or the probabilities Pv(l̂n � Tn;�) where l̂n = ~ln1fmaxi jxij�Ĥng
is

Ĥn-truncated ~ln) for v 2 Vn \ V n

B
where

V
n

B
= fv 2 Rn : max

i
jvij � B +Hn;

X
i

�(jvij �Hn) � Bg (4.38)
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for large enough B > 0 and Ĥn � Hn > 0.

Introduce the values Qn. If � > 2, then put Qn = Tn � bn + dn, if � > 2, then

putQn = Tn=2 (this corresponds to dn = bn�Tn=2). Here dn !1 is such sequence

that dn = o(bn) (using (4.26), (4.31) one can check that these relations hold for

� = 2 also ). If � 2 (1; 2), then put Qn = �bn; � 2 (1; �).

Let us consider the sets

Vn;1 = fv 2 Vn \ V n

B
: max

i

jvij � Qng;
Vn;2 = fv 2 Vn \ V n

B
: max

i

jvij > Qng:

Choose the values Hn. Let � > 3. Put Hn =
p
2 logn. By (4.31) one has

Qn �Hn !1 which implies Vn;2 = ; in this case.

Let� 2 [2; 3]. Using (4.31), (4.28) put Hn = Tn � tn=bn with such tn !1 that

n�(Hn)! 0 and if � > 2, then tn = o(bn) and if � = 2, then tn = o(bn=dn); 2dn =

2bn � Tn.

Let � 2 (1; 2). Using (4.32) , (4.28) put Hn = Tn + t(�)=bn for such t(�) that

n�(Hn) < �.

Denote mn(v) the number of coordinates jvij > Qn.

Lemma 4.1 For any � 2 (1; 3] one has

sup
v2Vn;2

mn(v) = o(nhn=b
3
n
):

Proof of the Lemma. Assume that there is such sequence v = v
(n) 2 Vn;2 and

A > 0 that mn(v
(n)) > Anhnb

�3
n
.

First, let � � 2. By Hn < Tn using (4.28) one has for large enough n and some

constant B > 0:X
i

�(jvij �Hn) � mn(v)�(dn � bn) � Bb
�4
n
nhn exp(�(bn � dn)

2
=2)

� nh
2
n
e
b2
n�(Tn � 2bn) = 2u2

n
� 1

by if Tn � 2bn > �B for any B <1 (it corresponds to � > 2), then using (4.26)

one has

b
4
n
hne

b2
n�(Tn � 2bn) � b

4
n
hn exp(b

2
n
+ (bn � dn)

2
=2) �

� b
4
n
exp(�bn(dn �B)� d

2
n
=2)! 0

and if Tn � 2bn = �dn=2!1; (it corresponds to � = 2), then

b
4
n
hne

b
2
n�(�dn=2) � b

4
n
d
�1
n

exp(�(bn � dn)dn=2)! 0:

Let � 2 (1; 2). By n�(�Hn) � � one has for some b > 0:X
i

�(jvij �Hn) � bmn(v)�(�bn � Tn) �

� b
4
n
nhn exp(�(Tn � �bn)

2
=2)� nT

�1
n
e
�T

2
n
=2 � n�(�Tn) � 1

12



by for � 2 (1; �)

h
�1
n

exp(�T 2
n
=2) � exp(�(Tn � bn)

2
=2) = o(exp(�(Tn � �bn)

2
=2)):

These relations contradict to the assumption v = v
(n) 2 V

n

B
which proves the

Lemma.

Put ~v = (~v1; :::; ~vn) where ~vi = vi1fjvij�Qng
. It is clear that ~v 2 V

n

B
. Also if

v 2 Vn;2, then using (1.13) and the Lemma 4.1 one has for large enough n :

~v 2 ~Vn = V
p;q

n
( ~R1;n; R2;n); ~R1;n = R1;n(1� b

�3
n
)

by X
i

j~vijp �
X
i

jvijp �mn(v)(Hn +B)p � R
p

1;n � o(nhnb
p�3
n

) � ~R1;n:

Note that the set Xn;� = fx 2 Rn : ~ln(x) � Tn;�g is convex and symmetrical on
any coordinate xi. Appling the Anderson's lemma (see Ibragimov and Hasminskii,

1981) to coordinate cross-sections of the set Xn;� we get the inequality Pn;v(Xn;� �
Pn;~v(Xn;� which implies for large enough n

�n( n;�; Vn) � minf�; sup
v2 ~Vn;Qn

Pn;v(~ln � Tn;�g (4.39)

where
~Vn;Qn

= fv 2 ~Vn \ V n

B
: max

i
jvij � Qng:

By the (4.39) later we deal with the estimation of the probabilities Pn;v(~ln � Tn;�)

( or the values Pn;v(l̂n � Tn;�) for Ĥn-truncated statistics ln with Ĥn � Hn ) for

v 2 ~Vn;Qn
. To simplicity we will omit often later the wave in the notations ~ln; ~Vn

and so on.

5 Upper bounds for � � 2

For Ĥn-truncated statistics ln with Ĥn = Tn � tn=bn � Hn ( Ĥn = Hn, if � < 3 )

and for v 2 Vn;Qn
using (4.27), (4.30) one can assume

ŵn = sup
x

jŵn(x)j = wn(Ĥn)! 0 (5.40)

where ŵn(x) = wn(x)1fjxj�Ĥng
are the Ĥn-truncated items in the sum for l̂n =P

i ŵn(xi). This implies the asymptotical (0,1)-normality of the statistics (l̂n �
m̂n)=(D̂n)

1=2 under Pn;v(n)-probability for any sequence v(n) 2 R
n. Here m̂n =

m̂n(v
(n)) and D̂n = D̂n(v

(n)) are the Pn;v(n)-mean and Pn;v(n)-variance of l̂n. It is to

obtain the relations:

�Dn = D̂n(v
(n))� D̂n(0) = o(�mn); (5.41)

�mn = m̂n(v
(n))� m̂n(0) � 2nh2

n
sinh2(b2

n
=2)�(Ĥn � 2bn): (5.42)
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In fact, the relations (5.40), (5.41) and the Central Limit Theorem (Petrov,

1981) imply that if �mn ! 1, then l̂n ! 1 and if �mn = O(1), then l̂n is

(�mn�u2n=2; u2n)-asymptotically Gaussian under Pn;v(n)-probability; �(Tn�2bn) �
�(Ĥn � bn) by the choosing Ĥn and the right-hand side in (5.42) is u2

n
(1 + o(1).

We have:

P
n;v(n)(l̂n � Tn;�) = �

�
t� �

�mn

un

�
+ o(1) � � (t� � un) + o(1):

To prove (5.41), (5.42) put

�n(v) =

Z
jxj<Ĥn

zn(x) (d�(x+ v)� d�(x)) = hn

Z
jxj<Ĥn

�(x; bn)�(x; v)d�(x);

�
2
n
(v) =

Z
jxj<Ĥn

z
2
n
(x) (d�(x+ v)� d�(x)) = hn

Z
jxj<Ĥn

�
2(x; bn)�(x; v)d�(x):

By (5.40) one has

�mn =
X
i

�n(v
(n)
i
) +O

 X
i

�
2
n
(v

(n)
i

!
; (5.43)

�Dn = O

 X
i

�
2
n
(v

(n)
i

!
+ o(1):

Using the relations: if b!1; H !1; H � jvj ! 1, thenZ
jxj<H

�(x; b)�(x; v)d�(x) � 2 sinh2(bv=2)�(H � b� jvj); (5.44)Z
jxj<H

�
2(x; bn)�(x; v)d�(x) � e

b2 sinh2(bv)�(H � 2b� jvj)(1 + o(1)) (5.45)

one can check that X
i

�
2
n
(v

(n)
i = o

 X
i

�n(v
(n)
i )

!

and by (5.43) this implies (5.41). Also these imply that (5.40) follows from the

inequality

inf
v2Vn;Qn

�i 2 sinh
2(bnvi=2)�(Ĥn � bn � jvij) � 2nh2

n
sinh2(b2

n
=2)�(Ĥn � 2bn) (5.46)

which follows from the

Lemma 5.1 Denote �n = �p;q
n
(R1;n; R2;n; Qn) the set of the collections �r =

(ri; :::; rn) of the probability measures on (R1
;B):

�n = f�r :
X
i

Z
jujpri(du) � R

p

1;n;
X
i

Z
jujqri(du) � R

q

2;n; ri([�Qn; Qn]) = 1g:

Let the values hn; bn are de�ned by (1.13), p > q; R1;n � R2;n, bn ! 1 and for
some dn; � 2 (0; 1) the following constraints hold:

bn < Qn � (1��)Hn+
q
2Hnbn � 3b2

n
; Hn > 2bn�dn; dn !1; dn = o(bn): (5.47)
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Put

�n(r) =

Z
�n(v)r(dv); Fn(�r) =

X
i

�n(ri)

where

�(v) = �n(v) = 2 sinh2(bnv=2)�(Hn � bn � jvj): (5.48)

Then for large enough n the following equality holds:

inf
�r2�n

Fn(�r) = Fn(�r
�

n
) = n�(�n) = nhn�(bn) (5.49)

where

�r�
n
= (�n; :::; �n); �n = �(hn; bn) = (1� hn)�0 +

hn

2
(�bn + ��bn):

In particularly, for large enough n one has

inf
v2Vn;Qn

X
i

�(vi) � nhn�(bn): (5.50)

Proof of the Lemma is given in sec. 8.

Note that the analogous to (5.49) equality for � > 2 and for �(v) =

2 sinh2(bnv=2) (which formally corresponds to (5.47), (5.48) with Hn = Qn =1)

follows from Ingster, 1990, 1993.

The Theorem 1 is proved.

6 Upper bounds for � 2 (1; 2)

6.1 The outline of the proof

By (4.39) it is enough to show that for any sequence v(n) 2 Vn;Qn
one has

limsup(Pn;v(n)
�
ln � T

0
c;�
(�)� �n(�; P�n

�
) � 0: (6.51)

Put

L
0
n
(t) = �2�(�Tn(t)); Ln(t) = L

0
n
(t) + �Ln(t)

where the values Tn(t) are de�ned by (4.29) and

�Ln(t) = �
X
i

�
P
1;v

(n)
i

(x : wn(x) > t)� P1;0(x : wn(x) > t)

�
= (6.52)

= �
X
i

�
�(�Tn(t) + jv(n)i j) + �(�Tn(t)� jv(n)i j)� 2�(�Tn(t))

�
:

It is clear that �Ln(t) � 0. Also one can easily check that �Ln(t)! 0 as t!1
and for large enough n and any t0 > 0 the functions �Ln(t) are bounded from

below on t � t0 and their derivatives are positive and bounded on t � t0. Thus the
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set of the functions f�Ln(t)g are equicontinuous in C[t0;1) for any t0 > 0 and we

can assume that for every t > 0

�Ln(t)! �L(t) (6.53)

where �L(t) is continuous on (0;1) and the properties of Levi spectrum hold:

�L(t) � 0; �L(t)! 0 as t!1; �L(t) nonincrease on t > 0

and (we will show below) for any � > 0Z
�

+0
t
2
d�L(t) <1: (6.54)

Put

�n =
X
i

�n;i = 2hn
X
i

sinh2(bnv
(n)
=2)�(Tn � bn � jv(n)i

j): (6.55)

The outline of the proof is following. We show that if �n ! 1, then ln ! 1
under P

n;v(n)-probability. Let �n = O(1). Then, by pass to subsequence, we can

�nd such constant b � 0 that the limit Pn;v(n)-distribution of the statistics ln is

the distribution of the sum � = �
0 + ��. Here �0 and �� are an independent

in�nite divisible random variables. The variable �0 corresponds to the limit P0-

distribution of the statistics ln and is described in sec. 2.2. The variable �� has

not Gaussian component also and is supported on the half-line (b;1) (it means

that the characteristic function ���(z) of the �� is of the form:

log���(z) = ibz +

Z
1

0
(exp(izt)� 1)d�L(t): (6.56)

Then we obtain the relation

�L(t) = L
�(t) + �(t); t > 0 (6.57)

where L�(t) is the Levi spectrum which has described by (2.22) and �(t); t > 0

is the Levi spectrum also:

�(t) � 0; d�(t)=dt � 0; �(t)! 0 as t!1
and the relation (6.54) implies the analogous relation for �(t): for any � > 0Z

�

+0
t
2
d�(t) <1: (6.58)

These relations imply the equality

� = �0 + �
� + � = �

1 + � (6.59)

where the random variables �0; �
�
; � are independent, �1 = �0+ �

� corresponds to

the limit distribution of ln under the Bayesian alternatives P�n and � � b � 0 with

the probability 1. By (6.59) and by the Theorem 2 in Ingster, 1997 one has

Pn;v(n)(ln � T
0
c;�
(�)) � P (�1 � T

0
c;�
(�)) + o(1) = �n(�; P�n) + o(1)

which imply (6.51) and the upper bounds of the Theorem 2.
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6.2 The study of the limit distribution of ln

To realize the outline above introduce the functions

�n(t) =
X
i

�n;i(t) = 2hn
X
i

Z
jxj < Tn(t)�(x; bn)�(x; v

(n)
i
)d�(x);

�
2
n
(t) =

X
i

�
2
n;i
(t) = 2h2

n

X
i

Z
jxj < Tn(t)�

2(x; bn)�(x; v
(n)
i
)d�(x)

and put

�
2
n
=
X
i

�
2
n;i

= 2h2
n
e
b
2
n

X
i

sinh2(bnv
(n))�(Tn � 2bn � jv(n)i

j):

Using the relations (5.44), (5.45) and (4.28) one can check that

�n;i(t) =

(
�n;i; if jv(n)

i
j � Tn � bn,

�n;i(e
t � 1)jv

(n)
i

j=bn+1��n ; if jv(n)
i
j > Tn � bn

(6.60)

and for large enough n

�
2
n;i
(t) � B�

2
n;i
(et � 1)jv

(n)
i

j=bn+2��n

( here and later we denote B some positive constants, may be, di�erent, which do

not depend on n). Also one can check that

�
2
n;i

=

(
o(�n;i(t)); if jv(n)i j � Tn � bn,

O(�n;i(t)); if jv(n)i j > Tn � bn

which imply for large enough n and small enough t > 0 the relation

�
2
n
(t) � B�n(t)(t + o(1)): (6.61)

Let us estimate the di�erences of the means and of the variances

�En = En;v(n) ln � En;0ln; �Dn = Dn;v(n) ln �Dn;0ln:

It is clear that

�En =
X
i

Z
wn(x)�(x; v

(n)
i )d�(x): (6.62)

Denote

~Dn;v(n) =
X
i

Z
w
2
n
(x)d�(x + v

(n)
i ); ~Dn;0 =

X
i

Z
w
2
n
(x)d�(x):

By En;0ln = nE1;0wn(x) = O(1) it is clear that �Dn � � ~Dn + o(1) and

� ~Dn = ~Dn;v(n) � ~Dn;0 =
X
i

Z
w
2
n
(x)�(x; )d�(x): (6.63)
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For any t > 0 put

�En = �E+
n
(t) + �E�

n
(t); � ~Dn = � ~D+

n
(t) + � ~D�

n
(t)

where the items with the index + and � correspond to the sums of the integrals

in (6.62) and (6.63) over the sets jxj > Tn(t) and jxj < Tn(t).

Let us obtain the relations

�E+
n
(t) = O(1); � ~D+

n
(t) = O(1); (6.64)

�E�

n
(t) = �n(t)(1 +O(t+ o(1))); (6.65)

� ~D�

n
(t) = O(�n(t)): (6.66)

To obtain (6.64), note the equality:

2�(x; v)d�(x) = d�(x + jvj) + d�(x� jvj)� 2d�(x) (6.67)

which implies the equality analogous to (6.52):

�E+
n
(t) = An(t) +Bn(t)� 2Cn(t) (6.68)

Here by (4.27), (4.30), (4.28) one has

An(t) �
X
i

0
@Tn � jv(n)i j

bn

1
A�(jv(n)i j � Tn)

Z
u>et�1

u
�(�+1�jv

(n)
i

j=bn) log(1 + u)du;

Bn(t) �
X
i

0
@Tn + jv(n)i j

bn

1
A�(�jv(n)i j � Tn)

Z
u>et�1

u
�(�+1+jv

(n)
i

j=bn) log(1 + u)du;

Cn(t) � c�

Z
u>et�1

u
�(�+1) log(1 + u)du

where the boundedness of the values An(t); Bn(t); Cn(t) follows from the bound-

edness of the integrals above (for jv(n)
i j=bn � � < � by the de�nition of the set

Vn;Qn
) and from the boundedness of the sums

P
i�(�Tn + jv(n)i j) by (6.52), (6.53).

The boundedness of the values � ~D+
n
(t) follows from the analogous estimations.

The relations (6.65), (6.66) follow from (6.61) and the relation log(1 + z) =

z +O(z2) for �1 +B
�1
< z < B.

Assume �n ! 1. Then by the boundedness of the values En;0ln; Dn;0ln and

from the relations (6.60), (6.62) - (6.66) one has

En;v(n) ln � �n !1; Dn;v(n)ln � BEn;v(n) ln

and using the Chebyshev inequality one has ln !1 under Pn;v(n)-distribution.

Assume �n = O(1). Let us obtain the relations:

lim
n!1

X
i

P
1;v

(n)
i

fx : wn(x) > tg = �� (L0(t) + �L(t)) for any t > 0; (6.69)

lim
t!0

lim
n!1

� ~D�

n
(t) = 0; (6.70)

lim inf
t!0

lim inf
n!1

�E�

n
(t) � 0; (6.71)

lim inf
t2!0

lim inf
t1!0

lim inf
n!1

(�E�

n
(t2)��E�

n
(t1)) = 0: (6.72)
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By pass to subsequence in (6.71) one can assume that there exist the limit b � 0

of the left-hand side (6.71). Then the relations (6.69) - (6.72) imply that the limit

P
n;v(n)-distribution of the statistics ln is the distribution of the sum � = �

0 + ��.

In fact (see Petrov, 1981), (6.69) implies the necessary form of the Levi spectrums,

(6.70) and analogous relation (4.7) in Ingster, 1997 imply that the limit Pn;v(n)-

distribution of ln has no Gaussian component and (6.54) holds.

Let us consider the component 
. One has the equality: 
� = 

0 + �
 where

for any t > 0

�
 = lim
n!1

X
i

Z
jwnj<t

wn(x)�(x; v
(n)
i
)d�(x)�

Z
t

+0

x
3

1 + x2
d�L(x)+

Z
1

t

x

1 + x2
d�L(x):

(6.73)

Let t ! 0 in (6.73). Then the relations (6.71), (6.54) imply that the limit of the

�rst item in right-hand side is nonnegative and the limit of the second item is 0.

Also by (6.69), (6.72) one can pass to the limit in the third item by :

lim
t!0

Z
t

0

x

1 + x2
d�L(x) = lim

t2!0
lim
t1!0

Z
t2

t1

xd�L(x) =

lim
t2!0

lim
t1!0

lim
n!1

(�E�

n
(t2)��E�

n
(t1)) = 0:

These imply the equality

�
 = b+

Z
1

+0

x

1 + x2
d�L(x)

which is equivalent to (6.56).

6.3 Proof of the (6.69) - (6.72)

The relation (6.69) follows from (6.53) and from the analogous relation (4.2) in

Ingster, 1997 for the limit Pn;0-spectrum L0. The relations (6.60), (6.61) imply the

estimators

� ~D�(t) � B�
2
n
(t) � B�n(t+ o(1))

which imply (6.70). The relation (6.71) follows from (6.65), (6.66), (6.60).

To prove (6.72) let us consider the equality

�E�

n
(t2)��E�

n
(t1) = �n;1(t1; t2) + �n;2(t1; t2):

Here �n;l(t1; t2); l = 1; 2 correspond to the sums of the items in (6.62) with such

i that jv(n)i j � An (for l = 1) and jv(n)i j 2 (An; Qn] (for l = 2) where An =

�n=Tn; �n ! 0. By j�(x; v)j � �
2
n
(1 + o(1))=2 for jvj � An; jxj � Tn(t2); using

(4.27), (4.30) one has for any t2 > t1 > 0:

�n;1(t1; t2) � n�
2
n

Z
Tn(t2)

Tn(t1)
jwn(x)jd�(x)(1 + o(1)) �

�
2
n
c�

Z
e
t1�1

et1�1
j log(1 + u)ju�(�+1)du! 0 as n!1: (6.74)
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To estimate �n;2(t1; t2) denote mn(An) the number of the items in this sum. By

(1.13) one has

mn(An) � A
�q

n

X
i

jv(n)
i
jq � (bn=An)

q
nhn � b

2q
n
�
�q

n
nhh

and by (4.32) for any �1 > 0 one can choose such �n = n
��0 and �0 > �1=q that

mn(An) � Bn
1+�1hn = o(n): (6.75)

By analogy with (6.52), (6.68) put

�n;2(t1; t2) = An(t1; t2) +Bn(t1; t2)� 2Cn(t1; t2)

where A; B; C are the sums which correspond to the items in the right-hand side

of (6.67). By analogy with the estimation of the values �E+
n
(t) one can obtain the

estimators: for any t2 > t1 > 0

Cn(t1; t2) � (1 + o(1))c�mn(An)n
�1
�1(t1; t2)! 0 as n!1

where

�1(t1; t2) =

Z
e
t1�1

et1�1
j log(1 + u)ju�(�+1)du

and analogously Bn(t1; t2)! 0. To estimate An(t1; t2) put

An(t1; t2) = An;1(t1; t2) + An;2(t1; t2):

Here the values An;l(t1; t2); l = 1; 2 correspond to the sums of the items in with

such i that jv(n)i j 2 (An; bn(1� �)] (for l = 1) and jv(n)i j 2 (bn(1� �); Qn] (for l = 2)

where 0 < � < min(2 � �; 2� � 2). Using (4.27), (4.30) (6.75) one has for small

enough t2 > t1 > 0 :

An;1(t1; t2) � Bmn(An)b
�1
n

exp(�(Tn � bn(1� �))2=2)�1(t1; t2)! 0 as n!1

by for small enough �1 > 0

mn(An)

bn
e
�(Tn�bn(1��))

2=2 � mn(An)

nhnbn
e
��b2

n
(�n�1��=2) ! 0:

Also one has for small enough t2 > t1 > 0 :

An;2(t1; t2) � Bn��(t1; t2); Bn � B
X
i

�(Tn � jv(n)i j) = O(1) as n!1

where

��(t1; t2) =

Z
et1�1

et1�1
j log(1 + u)ju�(�+�)du �

Z
t2

t1

u
1����

du

and by the choosing �

lim
t2!0

lim
t1!0

��(t1; t2)! 0:
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The estimators above imply (6.72).

Now it is necessary to obtain the relation (6.57). By pass n!1 this relation

follows from the inequalities

�Ln � L
�
�n
;
d

dt
�Ln �

d

dt
L
�
�n

(6.76)

where �Ln is de�ned by (6.52) and (see Ingster, 1997, the relation (4.11))

L
�
�n
(t) = n (P1;0(wn(x) > t)� P1;�n(wn(x) > t))! L

�(t):

The following Lemmas imply the inequalities (6.76).

Lemma 6.1 Let us change the constraints (5.47) of the Lemma 5.1 onto following:
for some B � 1

Hn � bn � dn !1; BHn � Qn > bn; (6.77)

and change the functionals (5.48) onto

�(v) = �(�Hn + v) + �(�Hn � v)� 2�(�Hn): (6.78)

Then for large enough n the equality (5.49) and the inequality (5.50) hold.

Lemma 6.2 Let us change the constraints (5.47) of the Lemma 5.1 onto following:

Hn � bn � dn !1; (2� �)Hn � bn � Qn > bn; (6.79)

and change the functionals (5.48) onto

�(v) = exp(�(Hn � v)2=2) + exp(�(Hn + v)2=2)� 2 exp(�H2
n
=2): (6.80)

Then for large enough n the equality (5.49) and the inequality (5.50) hold.

Proof of the Lemmas is given in sec 8.

The upper bounds of the Theorem 2 are proved.

7 The study of the tests (2.23): upper bounds

and consistent properties

Put �n;� = �n;�(bn; hn) = nhn�(bn �Hn;�).

Lemma 7.1

1. Assume (i): bn � Hn:� ! 1; or (ii): nhn ! 1 and �n;� ! 1. Then
�n( n;�; Vn)! 0.

2. Assume nhn !1 and �n;� = O(1). Then

�n( n;�; Vn) � (1� �) exp(��n;�) + o(1): (7.81)

3. Assume nhn = O(1). Then

�n( n;�; Vn) � (1� �)�(
q
2 logn� bn)

nhn + o(1): (7.82)

21



Proof of the Lemma. By p > q one has for all v 2 Vn

R
p

n;1 �
X
i

jvijp � max
i

jvijp�q
X
i

jvijq � max
i

jvijp�qRq

n;2:

This relations and (1.13) imply

inf
v2Vn

max
i
jvij � bn = (R

p

n;1=R
q

n;2)
1=(p�q)

: (7.83)

In analogy with (4.36) using (7.83) one has

�n( n;�; Vn) � �(Hn;� � inf
v2Vn

max
i

jvij) � �(Hn;� � bn)! 0

as bn �Hn:� !1.

Let nhn !1. One can assume that

Hn� � bn + dn for some sequence dn !1; dn = o(bn): (7.84)

In fact, put Vn(t) = V
p;q

n
(tRn;1; tRn;2); t 2 (0; 1) and note that

�n( n;�; Vn) � �n( n;�; Vn(t)):

One can get this relation from the proof of Anderson's lemma (see Ibragimov and

Hasminskii, 1981). The direct proof follows from the equality (in analogy with

(4.37) )

�n( n;�; v) =
Y
i

(1� �(Hn;� � jvij)� �(�Hn;� � jvij)) (7.85)

and from the decrease on jvij of the functions under the product. The set Vn(t) is
corresponding to the values hn(t) = hn; bn(t) = tbn. Thus, if lim supHn;��bn <1,

then one can choose such t = tn < 1 that (7.84) holds and �n;�(bn(tn); hn)!1.

Put Qn = Hn� + dn=2. Assume v 2 Vn; maxi jvij � Qn. Then �n( n;�; Vn)! 0

by (4.36).

Assume v 2 Vn; maxi jvij < Qn. Then using (7.85) one has

�n( n;�; v) = (1� �)
Y
i

 
1� �(jvij; Hn;�)

1� 2�(�Hn;�)

!
(7.86)

� (1� �) exp

 
� F (v;Hn;�)

1� 2�(�Hn;�)

!

where

F (v;H) =
X
i

�(vi; H); �(t; H) = �(�H + t) + �(�H � t)� 2�(�H):

Using the Lemma 6.1 for Hn = Hn;� one has F (v; ; Hn;�) � �n;� which imply

�n( n;�; v) � (1� �) exp(��n;�(1 + o(1)):
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Let nhn = O(1). One can assume that Hn;� � bn = O(1). Then analogously to

(7.86) we have:

�n( n;�; v) = (1� �) exp(�F (v;Hn;�)); F (v;H) =
X
i

�(vi; H)

where

�(v;H) = log

 
P1;0([�H;H])

P1;v([�H;H])

!
= log(�(H)��(�H))�log(�(H�v)��(�H�v)):

(7.87)

Then the inequality (7.82) follows from the

Lemma 7.2 Let us change the constraints (5.47) of the Lemma 5.1 onto following:

Hn � bn = O(1); bn +O(1) � Qn > bn; (7.88)

and change the functionals (5.48) onto (7.87). Then for large enough n the equality
(5.49) and the inequality (5.50) hold.

Proof of the Lemma 7.2 is given in sec 8.

The Lemma 7.1 is proved.

The following Lemma which has been proved in Ingster, 1997.

Lemma 7.3 Let kn = nhn !1:

1. Let �n <1; �n !1: Then �n;� !1:

2. Let � = 1; � � 1: Then �n;� = �n + o(1):

We get the upper bounds and consistent properties of the Theorem 3 from the

Lemmas 7.1, 7.3 and from the simple remark: if � 2 (1;1), then using (4.26) ,

(4.28) one has

cn = 2�(�Tn) � �n
� � 1

�
� �n:

The Theorem 3 is proved.

8 Proof of the Lemmas 5.1-7.2

We give the outline of the proofs and omit some simple calculations.

The linear convex problems of minimization are considered in the Lemmas: to

minimized the functional

inf
�r2�n

F (�r); F (�r) =
nX
i=1

Z
�(v)ri(dv)

where the convex set �n = f�r = (r1; :::; rn)g of collections of the probability mea-

sures ri on the real line is de�ned by the constraints: ri([�Qn; Qn] = 1; i = 1; :::; n

and
nX
i=1

Z
�1(v)ri(dv) � H1;

nX
i=1

Z
�2(v)ri(dv) � H2:
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Here the functions � = �n are de�ned by (5.48), (6.78), (6.80), (7.87), �(t) =

�(�t) � 0; �(0) = 0 and �1(v) = jvjp; �2(v) = jvjq; H1 = H1;n = R
p

1;n; H2 =

H2;n = R
q

2;n.

By the symmetry of the problems one can �nd the in�mum on the collections

�r� = (r�; :::; r�) 2 �n of the equal symmetrical measures r
�. Also using the method

of subdi�erentials and the Theorem by Kuhn and Tucker (see, for example, Io�e

and Tikhomirov (1976), pp. 76-77) one can get the su�cient conditions of in�mum:

there exist such � = �n > 0; � = �n > 0; � = �n that the following relations hold:

�(v)� ��1(v) + ��2(v) � � for all v 2 [�Qn; Qn] (8.89)

and

r
�(fv : �(v)� ��1(v) + ��2(v) = �g) = 1: (8.90)

It is enough to check that r� = �(bn; hn) satis�es to (8.90) and (8.89) holds for some

� > 0; � > 0; �. The relation (8.90) implies the equality in (8.89) for v = 0; v = b

and v = �b; b = bn !1 as n!1.

Put � = 0 and

� =
b�

0(b)� q�(b)

bp(p� q)
; � =

b�
0(b)� p�(b)

bq(p� q)
(8.91)

which imply the necessary equalities in (8.89). Thus we need to check the inequal-

ities: � > 0; � > 0 and

 (v) = �(v)+(v=b)q
b�

0(b)� p�(b)

p� q
�(v=b)p b�

0(b)� q�(b)

p� q
� 0; 0 � v � Qn: (8.92)

For large enough b = bn the inequalities � > 0; � > 0 follow from the relations:

�
0(b) > 0; �(b) = �(b)=b�0(b)! 0 as b!1: (8.93)

The relations (8.93) hold under assumptions of the Lemmas.

By f(t) = (tq� tp)=(p� q) > 0; t 2 (0; 1); f(1� z) � z as z ! 0 and �(v) � 0,

one can easily check that (8.92) holds, if v 2 ��

n
= (0; b�

n
) where b�

n
= bn(1�B�(bn))

for large enough B = B(p; q).

Fix small enough � > 0. Assume Qn � b
+
n
= bn + �dn (this is possible under

assumptions of the Lemmas 5.1-6.2) and v 2 �+
n
= [b+

n
; Qn]. To satisfy (8.92) for

v 2 �+
n
it is enough the following : for some B > 0

Bbn � Qn; �(v) � �(b+
n
); v 2 �n; bn�

0(bn)=�(b
+
n
)! 0 as bn !1: (8.94)

Under assumptions of the Lemmas 5.1-6.2 using (4.28) one can easily check that

(8.94) hold. Note that the relation �(v) � �(b+
n
); v 2 �n in (8.94) follows from

the constraints on Qn in the Lemmas 5.1, 6.2 and from the increase of �(v) on v

in the Lemma 6.1.

Let v 2 �0
n
= (b�

n
; b
�

n
) where b�

n
= min(Qn; b

+
n
) (note that b�

n
= Qn under the

assumptions of the Lemma 7.2). The relations (8.91) imply the tangency of the
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functions  (v) and v = 0 at the point v = bn. The inequality (8.92) follows from

the convexity of  (v); v 2 �0
n
. To convexity it is enough the following:

�
00

n
= inf

v2�0
n

�
00(v) > 0; �0(bn)=bn�

00

n
! 0 as bn !1 : (8.95)

One can easily check (8.95) under the assumption of the Lemmas. In fact,

�
00

n
= �

00(b�
n
) under assumptions of the Lemmas 5.1-6.2; �00

n
� �

0(bn) � 1 under

assumptions of the Lemma 7.2.

The Lemmas are proved.
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