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Gradient methods for problems with inexact model of the
objective

Fedor Stonyakin, Darina Dvinskikh, Pavel Dvurechensky, Alexey Kroshnin, Olesya Kuznetsova,
Artem Agafonov, Alexander Gasnikov, Alexander Tyurin, Cesar A. Uribe, Dmitry Pasechnyuk, Sergei

Artamonov

Abstract

We consider optimization methods for convex minimization problems under inexact informa-
tion on the objective function. We introduce inexact model of the objective, which as a particular
cases includes inexact oracle [19] and relative smoothness condition [43]. We analyze gradient
method which uses this inexact model and obtain convergence rates for convex and strongly
convex problems. To show potential applications of our general framework we consider three par-
ticular problems. The first one is clustering by electorial model introduced in [49]. The second one
is approximating optimal transport distance, for which we propose a Proximal Sinkhorn algorithm.
The third one is devoted to approximating optimal transport barycenter and we propose a Prox-
imal Iterative Bregman Projections algorithm. We also illustrate the practical performance of our
algorithms by numerical experiments.

1 Introduction

In this paper we consider optimization methods for convex problems under inexact information on the
objective function. This information is given by an object, which we call inexact model. Inexact model
generalizes the inexact oracle introduced in [19], where inexactness is assumed to be present in the
objective value and its gradient. The authors show that, based on these two objects, it is possible to
construct a linear function, which is a lower approximation and, up to a quadratic term, an upper ap-
proximation of the objective, and these two approximations are enough to obtain convergence rates for
gradient method and accelerated gradient method. We go beyond and assume that the approximations
of the objective are given through some function, which is not necessarily linear.

This allows us to construct general gradient-type method which is applicable in for different prob-
lem classes and allows to obtain convergence rates in these situations as a corollary of our general
theorem. Besides convex problems we focus also on strongly convex objectives and illustrate the ap-
plication of our general theory by two examples. The first example is data clustering by electoral model
[49]. The second example relates to Wasserstein distance and barycenter, which are widely used in
data analysis [15, 16].

Many optimization methods use some model of the objective function to define a step by minimization
of this model. Usually the model is constructed using exact first-order [46, 21, 52], second-order [51],
or higher-order information [11, 48] information on the objective. The influence of inexactness on the
convergence of gradient-type methods have being studied at least since [55]. Accelerated first-order
methods with inexact oracle are studied in [17, 44, 19, 24, 14]. Some recent works study also non-
convex problems in this context [10, 22]. Randomized methods with inexact oracle are also studied
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F. Stonyakin et al. 2

in the literature, e.g. coordinate descent in [62, 32], random gradient-free methods and random direc-
tional derivative methods in [27, 26]. A method with inexact oracle for variational inequalities can be
found in [31].

The contributions of this paper can be summarized as follows.

� We introduce an inexact model of the objective function for convex optimization problems and
strongly convex optimization problems.

� We introduce and theoretically analyze a gradient-type method for convex and strongly convex
problems with an inexact model of the objective function. For the latter case we prove linear rate
of convergence.

� We apply our method to, generally speaking, non-convex optimization problem which arises in
clustering model introduced in [49]. To do this we construct an inexact model and apply our
general algorithms and convergence theorems.

� We apply our general framework for Wasserstein distance and barycenter problems and show
that it allows to construct a proximal á la [12] version of the Sinkhorn’s algorithm [58] and
Iterative Bregman Projection algorithm [7].

Notation. We define 1 = (1, ..., 1)T ∈ Rn,KL(z|t) to be the Kullback-Leibler divergence:KL(z|t) =
n∑
k=1

zk ln(zk/tk), ∀z, t ∈ Sn(1), where Sn(1) is the standard simplex in Rn. We also denote by �
the entrywise product of two matrices.

2 Gradient Methods with Inexact Model of the Objective

Consider the convex optimization problem

f(x)→ min
x∈Q

, (1)

where function f is convex and Q ⊆ Rn is a simple convex compact set. Moreover, assume that
minx∈Q f(x) = f(x∗) for some x∗ ∈ Q.

To solve this problem, we introduce a norm ‖ · ‖ on Rn and a prox-function d(x) which is continuous
and convex. We underline that, unlike most of the literature, we do not require d to be strongly convex.
Without loss of generality, we assume that min

x∈Rn
d(x) = 0. Further, we define Bregman divergence

V [y](x) := d(x)−d(y)−〈∇d(y), x−y〉. Next we define the inexact model of the objective function,
which generalizes the inexact oracle of [19] (see also [24, 10, 28, 35, 61, 63]).

Definition 1. Let function ψδ(x, y) be convex in x ∈ Q and satisfy ψδ(x, x) = 0 for all x ∈ Q.

i) We say that ψδ(x, y) is a (δ, L)-model of the function f at a given point y with respect to V [y](x)
iff, for all x ∈ Q, the inequality

0 ≤ f(x)− (f(y) + ψδ(x, y)) ≤ LV [y](x) + δ (2)

holds for some L, δ > 0.

ii) We say that ψδ(x, y) is a (δ, L, µ)-model of the function f at a given point y with respect to V [y](x)
iff, for all x ∈ Q, the inequality

µV [y](x) ≤ f(x)− (f(y) + ψδ(x, y)) ≤ LV [y](x) + δ (3)
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Gradient methods for problems with inexact model of the objective 3

Note that we allow L to depend on δ. We refer to the case i) as convex case and to the case ii) as
strongly convex case.

Remark 1. In the particular case of function f possessing (δ, L)-oracle [19] at a given point y, one
has

0 ≤ f(x)− f(y)− 〈gδ(y), x− y〉 ≤ L

2
‖x− y‖2 + δ

and ψδ(x, y) = 〈gδ(y), x− y〉. In the same way, if function f is equipped with (δ, L, µ)-oracle [20],
i.e.,

µ

2
‖x− y‖2 ≤ f(x)− f(y)− 〈gδ,L,µ(y), x− y〉 ≤ L

2
‖x− y‖2 + δ ∀x ∈ Q,

we have ψδ(x, y) = 〈gδ,L,µ(y), x− y〉.

The algorithms we develop are based on solving auxiliary simple problems on each iteration. We
assume that these problems can be solved inexactly and, following [6] introduce a definition of inexact
solution of a problem.

Definition 2. Consider a convex minimization problem

φ(x)→ min
x∈Q⊆Rn

. (4)

If φ is smooth, we say that we solve it with δ̃-‘precision’ (δ̃ ≥ 0) if we find x̃ s.t. maxx∈Q〈∇φ(x̃), x̃−
x〉 = δ̃. If φ is general convex, we say that we solve this problem with δ̃-‘precision’ if we find x̃ s.t.

∃h ∈ ∂φ(x̃), 〈h, x∗ − x̃〉 ≥ −δ̃. In both cases we denote this x̃ as argminδ̃x∈Q φ(x).

We notice that the case δ̃ = 0 corresponds to the case when x̃ is an exact solution of convex
optimization problem (4) [6, 46]. The connection of Definition 2 with standard definitions of inexact
solution, e.g. in terms of the objective residual, can be found in Appendix G of the full version of the
paper [60].

2.1 Convex Case

In this subsection we describe a gradient-type method for problems with (δ, L)-model of the objective.
This algorithm is a natural extension of gradient method, see [35, 61, 63].

Algorithm 1 Gradient method with (δ, L)-model of the objective.

1: Input: x0 is the starting point, L > 0 and δ, δ̃ > 0.
2: for k ≥ 0 do
3:

φk+1(x) := ψδ(x, xk) + LV [xk](x), xk+1 := arg min
x∈Q

δ̃φk+1(x).

4: end for
Ensure: x̄N = 1

N

∑N−1
k=0 xk+1

Theorem 3. Let V [x0](x∗) ≤ R2, where x0 is the starting point, and x∗ is the nearest minimum point
to the point x0 in the sense of Bregman divergence V [y](x). Then, for the sequence, generated by
Algorithm 1 the following inequality holds:

f(x̄N)− f(x∗) ≤
LR2

N
+ δ̃ + δ,
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F. Stonyakin et al. 4

In appendix A of the full version of the paper [60] we prove this theorem and provide an adaptive
version of Algorithm 3, which does not require knowledge of the constant L.

2.2 Strongly Convex Case

In this subsection we consider problem (1) with (δ, L, µ)-model of the objective function satisfying (3).
This more strong assumption allows us to obtain linear rate of convergence of the proposed algorithm.
Our algorithm is listed as Algorithm 2 and it is a version of Algorithm 1, which is adaptive to possibly
unknown constant L.

Algorithm 2 Adaptive gradient method with an oracle using the (δ, L, µ)-model

1: Input: x0 is the starting point, µ > 0 L0 ≥ 2µ and δ.
2: Set S0 := 0
3: for k ≥ 0 do
4: Find the smallest ik ≥ 0 such that

f(xk+1) ≤ f(xk) + ψδ(xk+1, xk) + Lk+1V [xk](xk+1) + δ,

where Lk+1 = 2ik−1Lk for Lk ≥ 2µ and Lk+1 = 2ikLk for Lk < 2µ,
αk+1 := 1

Lk+1
, Sk+1 := Sk + αk+1.

φk+1(x) := ψδ(x, xk) + Lk+1V [xk](x), xk+1 := arg min
x∈Q

δ̃φk+1(x).

5: end for
Ensure: x̄N = 1

SN

∑N−1
k=0

xk+1

Lk+1

Let’s introduce average parameter L̂:

1− µ

L̂
= k+1

√(
1− µ

Lk+1

)(
1− µ

Lk

)
. . .

(
1− µ

L1

)
.

Note that by Li ≥ µ (i = 1, 2, . . .)

min
1≤i≤k+1

Li ≤ L̂ ≤ max
1≤i≤k+1

Li≤ 2L.

The following result holds.

Theorem 4. Let ψδ(x, y) is a (δ, L, µ)-model for f w.r.t. V [y](x). Then, after k iterations of Algorithm
2, we have

V [xk+1](x∗) ≤
2L(δ + δ̃)

µ2

(
1−

(
1− µ

2L

)k+1
)

+

(
1− µ

L̂

)k+1

V [x0](x∗),

f(xk+1)− f(x∗) ≤
4L2(δ + δ̃)

µ2

(
1−

(
1− µ

2L

)k+1
)

+ 2L

(
1− µ

L̂

)k+1

V [x0](x∗).
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Gradient methods for problems with inexact model of the objective 5

The details of proof can be found in Appendix B of the full version of the paper [60]. Note that Algorithm
1 also has linear convergence rate for the strongly convex case. The details can be found in Appendix
C of the full version of the paper [60]. The benefit of Algorithm 1 is that there is no need to know the
strong convexity parameter µ for the algorithm to work. On the other hand, this parameter is needed
for assessing the quality of the solution returned by the algorithm. The benefit of the adaptive version is
that it does not require to know the value of the parameter L and adapts to it. Moreover, the parameter
L can be different for the model at different points and the algorithm adapts also for the local value of
this parameter.

3 Clustering by Electorial Model

In this section we consider clustering model introduced in [49]. In this model voters (data points)
choose a party (cluster) in an iterative manner by alternative minimization of the following function.

fµ1,µ2(x = (z, p)) = g(x) + µ1

n∑

k=1

zk ln zk +
µ2

2
‖p‖22 → min

z∈Sn(1),p∈Rm
+

, (5)

where Rm
+ is a non-negative orthant and Sn(1) is the standard n-dimensional simplex in Rn.

The vector z contains probabilities with which voters choose the considered party, and vector p de-
scribes the position of the party in the space of voter opinions. The minimized potential is the result
of combining two optimization problems into one: voters choose the party whose position is closest to
their personal opinion and the party adjusts its position minimizing dispersion and trying not to go too
far from its initial position. Yu. Nesterov in [49] used sequential elections process to show that under
some natural assumptions the process convergence and gives the clustering of the data-points. This
was done for a particular choice of the function g which has limited interpretability. We show, how our
framework of inexact model of the objective allows to construct a gradient-type method for the case of
general function g, which is not necessarily convex.

Assume that g(x) (generally, non-convex) is a function with Lg-Lipschitz continuous gradient:

‖∇g(x)−∇g(y)‖∗ ≤ Lg‖x− y‖ ∀x, y ∈ Sn(1)× Rm
+ , (6)

and, following [49], the numbers µ1, µ2 are chosen such that Lg ≤ µ1 and Lg ≤ µ2.

The norm ‖ · ‖ in Sn(1) × Rm
+ is defined as ‖(z, p)‖2 = ‖z‖21 + ‖p‖22, where ‖z‖1 =

n∑
k=1

zk and

‖p‖2 =

√
m∑
k=1

p2k. The correctness of this definition is proved in Appendix I.

It can be shown that

ψδ(x, y) = 〈∇g(y), x− y〉 − Lg ·KL(zx|zy)−
Lg
2
‖px − py‖22

+µ1(KL(zx|1)−KL(zy|1)) +
µ2

2

(
‖px‖22 − ‖py‖22

) (7)

is a (0, 2Lg)-model of fµ1,µ2(x) in x with respect to the following Bregman divergence

V [y](x) = KL(zx|zy) +
1

2
‖px − py‖22.
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F. Stonyakin et al. 6

The proof is detailed in Appendix I of the full version of the paper [60].

Further, for the case min{µ1, µ2} > Lg ψδ(x, y) is a strongly convex w.r.t. V [y](x):

ψδ(x, y) = ψlinδ (x, y) + (µ1 − Lg) ·KL(zx|zy) +
µ2 − Lg

2
‖px − py‖22 ≥ (8)

≥ (min{µ1, µ2} − Lg) · V [y](x),

where
ψlinδ (x, y) = 〈∇g(y), x− y〉+ µ1〈∇KL(zy|1), zx − zy〉+ µ2〈py, px − py〉

is linear in y. The proof of (8) is given in Appendix I of the full version of the paper [60].

Thus, ψlinδ (x, y) is a (0,max{µ1, µ2}+ Lg,min{µ1, µ2} − Lg)-model of the function fµ1,µ2 :

fµ1,µ2(y) + ψlinδ (x, y) + (min{µ1, µ2} − Lg)V [y](x) ≤ fµ1,µ2(x)

and
fµ1,µ2(x) ≤ fµ1,µ2(y) + ψlinδ (x, y) + (max{µ1, µ2}+ Lg)V [y](x).

So, we can apply our Algorithms 1 and 2 to the problem (5).

4 Proximal Sinkhorn Algorithm for Optimal Transport

In this section we consider the problem of approximating an optimal transport (OT) distance. Recently
optimal transport distances has gained a lot of interest in machine learning and statistical applications
[4, 8, 18, 33, 40, 54, 59]. To state the OT problem, assume that we are given two discrete probability
measures p, q ∈ Sn(1) and ground cost matrix C ∈ Rn×n

+ , then the optimal transport problem is

〈C, π〉 → min
π∈U(p,q)

, U(p, q) = {π ∈ Rn×n
+ : π1 = p, πT1 = q} (9)

where 〈·, ·〉 denotes Frobenius dot product of matrices, π is a transportation plan. The above optimal
transport problem is the Kantorovich [37] linear program (LP) formulation of the problem, which goes
back to the Monge’s problem [45]. The best known theoretical complexity for this linear program is 1

Õ(n2.5), see [42]. However, there is no known practical implementation of this algorithm. In practice,
the simplex method gives complexity O(n3 lnn) [53]. We follow the alternative approach based on
entropic regularization of the OT problem [15]. We show how our general framework of inexact model
of the objective allows to construct Proximal Sinkhorn algorithm with better computational stability in
comparison with the standard Sinkhorn algorithm.

For any optimization problem (1), ψδ(x, y) = f(x) − f(y) satisfies Definition 1 with any L ≥ 0. In
this case, our Algorithm 1 becomes inexact Bregman proximal gradient method

xk+1 = arg min
x∈Q

δ̃
{
f(x) + LV [xk](x)

}
.

Our idea is to apply this proximal method for the OT problem and approximately find the next iter-
ate xk+1 by Sinkhorn’s algorithm [58, 15, 2, 29]. The latter is made possible by the choice of V as

1Here and below for all (large) n: Õ(g(n)) ≤ C̃ · (lnn)rg(n) with some constants C̃ > 0 and r ≥ 0. Typically,

r = 1, but not in this particular case. If r = 0, then Õ(·) = O(·).
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Algorithm 3 Sinkhorn’s Algorithm

Require: Accuracy ε̃, matrix K = e−C/γ , marginals p, q ∈ Sn(1).

1: Set t = 0, u0 = ln p, v0 = ln q, ε′ = ε̃
4

(
maxi,j Cij −mini,j Cij + 2γ ln

(
4γn2

ε̃

))−1
.

2: repeat
3: if t mod 2 = 0 then
4: ut+1 = ut + ln p− ln(B(ut, vt)1), where B(u, v) := diag(eu)K diag(ev)
5: vt+1 = vt

6: else
7: vt+1 = vt + ln q − ln(B(ut, vt)T1)
8: ut+1 = ut

9: end if
10: t = t+ 1
11: until ‖B(ut, vt)1− p‖1 +

∥∥B(ut, vt)T1− q
∥∥
1
≤ ε′

12: Find π̂ as the projection of B(ut, vt) on U(p, q) by Algorithm 2 in [2].
Ensure: π̂.

KL divergence, which makes the problem of finding the point xk+1 to be an entropy-regularized OT
problem, which, in turn, is efficiently solvable by the Sinkhorn algorithm.

Consider the iterates

π0 = pqT ∈ U(p, q), πk+1 = arg min
π∈U(p,q)

ε/2
{
〈C, π〉+ L ·KL(π|πk)

}

= arg min
π∈U(p,q)

ε/2KL

(
π

∣∣∣∣πk � exp

(
−C
L

))
, (10)

which we call outer iterations. On each outer iteration we use Sinkhorn’s algorithm 3, which solves
the minimization problem in (10) with accuracy ε̃ in terms of its objective residual. Notice that here
ε′ differs from the one from [2, 29] as we need approximated solution to the regularized problem.
Moreover, unlike [29] we use a slightly refined theoretical bounds for the Sinkhorn’s algorithm not
depending on vectors p, q2.

Theorem 5. Let π̄N = 1
N

∑N
k=1 π

k, where πk are the iterates of (10). Then, after N = 4L lnn
ε

iterations, it holds that 〈C, π̄N〉 ≤ minπ∈U(p,q)〈C, π〉+ε. Moreover, the accuracy ε̃ for the solution of

(10) is sufficient to be set as Õ(ε4/(Ln4)) and the complexity of Sinkhorn’s Algorithm on k-th iteration
is bounded as

n2Õ

(
min

{
exp

( c̄k
L

)( c̄k
L

+ ln
c̄k
ε̃

)
,
c̄2k
Lε̃

})
, (11)

where3

c̄k = ‖C‖∞ + L ln

(
maxi,j π

k
ij

mini,j πkij

)
. (12)

2One can find the proof in Appendix E of the full version of the paper [60]
3This bound is rough and typically c̄k is smaller in practice. By proper rounding of πk one can guarantee (without loss

of generality) that πk
ij ≥ ε/(2n2‖C‖∞), which gives

c̄k
L

=
‖C‖∞
L

+ ln

(
2n2 ‖C‖∞

ε

)
.

But, in practice there often is no need to make ‘rounding’ after each outer iteration.
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0.0 0.1 0.2 0.3 0.4
L

0

500

1000

1500

N
(L

)

Adaptive choice of L, ε= 0.004

Sinkhorn's algorithm
L= 0.041

Figure 1: Adaptive choice of L

Remark 2. The standard Sinkhorn’s method can be seen
as a particular case of our algorithm (10) with only one
step. To obtain an ε-approximate solution of (9), the reg-
ularization parameter L needs to be chosen O (ε/ lnn)
[2, 29, 36]. This can lead to instability of the Sinkhorn’s
algorithm [57]. On the opposite, our Proximal Sinkhorn
algorithm allows to run Sinkhorn’s algorithm with larger
regularization parameter. This parameter can be cho-
sen by minimization of the theoretical bound (11), which
gives L = Õ(‖C‖∞). In practice one can choose this
constant adaptively since we have a (δ, L)-model for any
L and can vary L from iteration to iteration. First, the in-
ner problem (10) is solved with overestimated L. Then, we set L := L/2 and the problem is solved
with the updated value of the parameter and so on until a significant increase (e.g. 10 times) in the
complexity of the auxiliary entropy-linear programming problem in comparison with the initial complex-
ity is detected, see Figure 1, where N(L) is a number of required iterations of Sinkhorn algorithm to
solve the inner problem with accuracy ε.

From the Theorem 5 and Remark 2 one can roughly estimate the total complexity of Proximal Sinkhorn
algorithm as4 Õ(n4/ε2). We also mention several recent complexity bounds5 for the OT problem
Õ(n2/ε3) [2], Õ(n2/ε2) and Õ(n2.5/ε) [29], Õ(n2/ε) [9, 56], Õ(n/ε3+d), d ≥ 1 [1].

4.1 Numerical Illustration

In this subsection we provide numerical illustration of the Proximal Sinkhorn algorithm.6 In the exper-
iments we use a standard MNIST dataset with images scaled to a size 10 × 10. The vectors p and
q contain the pixel intensities of the first and second images respectively. The value of cij is equal to
the Euclidean distance between the i-th pixel from the vector p and the j-th pixel from the vector q
on the image pixel grid. For experiments with varying number of pixels n the images are resized to be
images of 10 ·m × 10 ·m pixels, where m ∈ N. We replace all the zero elements in p and q with
10−3 and, then, normalize these vectors.

4Our experiments on MNIST data set show (see Figures 2, 3) that in practice the bound is better.
5Strictly speaking for the moment we can not verify all the details of the proof of estimate Õ(n2/ε). Also the proposed

in [9, 56] methods are mainly theoretical, like Lee–Sidford’s method for OT problem with the complexity Õ(n2.5) [42].
For the moment it is hardly possible to implement these methods such that theirs practical efficiencies correspond to the
theoretical ones.

6The code is available at https://github.com/dmivilensky/Proximal-Sinkhorn-algorithm
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log(1/ε)

4

6

8

10

lo
gN

Sinkhorn's algorithm
1.22x+3.16
Proximal Sinkhorn's algorithm, L=1
0.77x+2.76
Proximal Sinkhorn's algorithm, L=10
0.66x+3.90

2.5 3.0 3.5 4.0 4.5 5.0
logn

Sinkhorn's algorithm
0.94x+4.25
Proximal Sinkhorn's algorithm, L=1
0.88x+1.99
Proximal Sinkhorn's algorithm, L=10
0.81x+2.76

Iteration number

Figure 2: Comparison of iteration number of Sinkhorn’s algorithm and total number of Sinkhorn steps
in Proximal Sinkhorn’s algorithm for different L.
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Sinkhorn's algorithm
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Figure 3: Comparison of working time of Sinkhorn’s algorithm and Proximal Sinkhorn’s algorithm with
different L.

Fig. 2 shows that the growth rate of the iteration number with increasing accuracy or size of the problem
for the Sinkhorn’s algorithm is greater than for the Proximal Sinkhorn’s method. At the same time, with
a higher value of L in proximal method, the iteration number is greater, and the growth rates with some
precision are equal. The same type of dependence on the accuracy and the size of the problem can
be seen for the working time (fig. 3).

More experiments can be found in the full version of this paper [60], in particular, on the mean number
of inner iterations (Fig. 7 and 8).

5 Proximal IBP Algorithm for Wasserstein Barycenter

In this section we consider a more complicated problem of approximating an OT barycenter. OT
barycenter is a natural definition of a mean in a space endowed with an OT distance. Such barycen-
ters are used in the analysis of data with geometric structure, e.g. images, and other machine learn-
ing applications [16, 7, 38, 54, 39]. For a set of probability measures {p1, . . . , pm}, cost matrices
C1, . . . , Cm ∈ Rn×n

+ , and w ∈ Sn(1), the weighted barycenter of these measures is defined as a
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solution of the following convex optimization problem

m∑

l=1

wl min
πl∈U(pl,q)

〈Cl, πl〉 → min
q∈Sn(1)

⇐⇒
m∑

l=1

wl〈Cl, πl〉 → min
π∈C1∩C2

,

C1 = {π = [π1, . . . , πm] : ∀l πl1 = pl} , C2 =
{
π = [π1, . . . , πm] : πT1 1 = · · · = πTm1

}
.

The idea is similar to the one in Sec. 4, namely, we use our framework to define a Proximal Iterative
Bregman Projections algorithm. The algorithm starts from the point π s.t. π0

l = 1
n
pl1

T ∈ U(pl,1/n),
l = 1, ...,m and iterates

πk+1 = arg min
π∈C1∩C2

ε/2

m∑

l=1

wl
{
〈Cl, πl〉+ L ·KL(πl|πkl )

}

= arg min
π∈C1∩C2

ε/2

m∑

l=1

wlKL

(
πl

∣∣∣∣πkl � exp

(
−Cl
L

))
. (13)

These iterations are called outer iterations and on each such iteration, the Iterative Bregman Projec-
tions algorithm [7] listed as Algorithm 4 below is used to solve the auxiliary minimization problem.

Algorithm 4 Iterative Bregman Projection

Require: C1, . . . , Cm, p1, . . . , pm, L > 0, ε̃ > 0
1: u0l := 0, v0l := 0, Kl := exp

(
−Cl

L

)
, l = 1, . . . ,m

2: repeat
3: vt+1

l :=
∑m

k=1wk lnKT
k e

utk − lnKT
l e

utl , ut+1 := ut

4: t := t+ 1
5: ut+1

l := ln pl − lnKle
vtl , vt+1 := vt

6: t := t+ 1
7: until

∑m
l=1wl

∥∥BT
l (utl , v

t
l )1− q̄t

∥∥
1

≤ ε̃
4maxl‖Cl‖∞

, where Bl(ul, vl) =

diag (eul)Kl diag (evl), q̄t :=
∑m

l=1wlB
T
l (utl , v

t
l )1

8: q := 1∑m
l=1 wl〈1,Bl1〉

∑m
l=1wlB

T
l 1

9: Calculate π̂1, . . . , π̂m by Algorithm 2 from [2] s.t.
π̂l ∈ U(pl, q), ‖π̂l −Bl‖1 ≤ ‖Bl1− pl‖1 +

∥∥BT
l 1− q

∥∥
1
.

Ensure: q, π̂ = [π̂1, . . . , π̂m].

Theorem 6. Let π̄N = 1
N

∑N
k=1 π

k, where πk are the iterates of (13). Then, after N = 4Lm lnn
ε

iterations, it holds that

m∑

l=1

wl〈Cl, π̄Nl 〉 ≤ min
π∈C1∩C2

m∑

l=1

wl〈Cl, πl〉+ ε.

Moreover, the accuracy ε̃ for the solution of (13) is sufficient to be set as ε̃ = Õ(ε2/(mn3)) and the
complexity of IBP on k-th iteration is bounded as

mn2Õ

(
min

{
exp

( c̄k
L

)
ln
c̄k
ε̃
,
c̄2k
Lε̃

})
,

c̄k = O

(
max
l=1,...,m

[
‖Cl‖∞ + L ln

(
maxi,j[π

k
l ]ij

mini,j[πkl ]ij

)])
.
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The proof of Theorem 6 is based on Theorem 3 and [38]. All the remarks from Section 4 for Proximal
Sinkhorn algorithm also hold for Proximal IBP. In [38] it was shown that complexity of IBP is Õ (n2/ε2).
Despite the theoretical complexity of Proximal IBP is worse than this bound, we show in the next
section that in practice Proximal IBP beats the standard IBP algorithm. As an alternative to the IBP
algorithm we mention primal-dual accelerated gradient descent [23, 64].

5.1 Numerical Illustration

In this section, we present preliminary computational results for the numerical performance analysis
of the Proximal Iterative Bregman Projection (ProxIBP) method discussed above asthe iterates (13).

Initially, we show the results for the computation of a non-regularized Wasserstein barycenter of a set
of 10 truncated Gaussian distributions with finite support. For the finite support

x = [−5,−4.9,−4.8, . . . ,−0.1, 0, 0.1, . . . , 4.8, 4.9, 5]

, we set the finite distribution pl such that pl(i) = N (xi;µi, σi), that is, the value at coordinate i of
the distribution pl, for 1 ≤ l ≤ m, is the value of the Normal distribution with mean µi and standard
deviation σi. The values {µi} ∼ Uniform[−5, 5], are uniformly chosen in the line segment [−5, 5],
and the values are selected as {µi} ∼ Uniform[0.25, 1.25]. For simplicity of exposition, we select
uniform weighting for all distributions, i.e., wl = 1/m.

Figure 4 shows the numerical results for a number of comparative scenarios between the Iterative
Bregman Projection (IBP) algorithm proposed in [7] and its Proximal variant in (13). For both algo-
rithms, we show the function values achieved by the generated iterates, and the final approximated
barycenter. The results for the IBP algorithm are shown in Figure 4(a) and Figure 4(b). Figure 4(a)
shows the weighted distance between the generated barycenter and the original distributions for three
different desired accuracy values. It is clear that a bigger ε generates a faster convergence, but the
final cost is slightly higher than in other cases. Figure 4(b) shows the resulting barycenter for the three
values of the accuracy parameter. For higher accuracy, the effects of the regularization constant are
smaller and thus we obtain a “spikier” barycenter. Figure 4(c) and Figure 4(d) shows a similar analysis
for the proposed Proximal IBP in (13), in Figure 4(c) we observe the function value of the generated
barycenter, for a fixed number of inner loop iterations, and changing values of L, note that here L
is not a regularization parameter but the weight on the Bregman function. For larger values of L, the
inner loop problem is easier to solve, requires less iterations to achieve certain accuracy, with the price
in a larger number of iterations in the outer loop. For the particular problem studied, 200 iterations in
the outer loop are sufficient to achieve good performance even with relavively smaller values of L.
Figure 4(c) shows the generated barycenters for the Proximal IBP algorithm. Finally, Figure 4(e) and
Figure 4(f) show the results, for the analogous adaptive stopping condition described in Line 11 of
Algorithm 3 with ε = 1 · 10−10. We test two different values of the parameter L, namely 1 and 0.1.
Additionally, we explore the suggested adaptive search procedure, where one decreases the value of
the parameter L at each iteration, until the inner problem has become particularly hard to solve. This
last approach is shown a fast convergence as it reaches a comparable value in around 10 iterations.
Figure 4(f) shows the resulting barycenters.

Again, we refer to the full version [60] for additional experiments e.g. on computing Wasserstein
barycenters of images from MNIST dataset (Fig. 5 and 6).
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Conclusions

In this paper we consider gradient methods with inexact information of the objective given by inexact
model of this objective. We analyze a gradient-type method for this type of problems and provide its
convergence rate. To illustrate the applications, we consider optimization problems in optimal transport
and a clustering model. Notably, our framework allows to solve non-convex problems which have a
convex inexact model, which is illustrated in the section devoted to clustering model.
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Figure 4: Numerical results for the computation of the barycenter of 10 truncated Gaussian random
variables with finite support for the IBP Algorithm and the Proximal IBP algorithm. Both function value
and final resulting barycenter are shown for an number of simulation scenarios.
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A Adaptive gradient method and proof of Theorem 3

Algorithm 5 Adaptive gradient method with inexact model of the objective

1: Input: x0 is the starting point, L0 > 0 and δ > 0.
2: Set S0 := 0
3: for k ≥ 0 do
4: Find the smallest ik ≥ 0 such that

f(xk+1) ≤ f(xk) + ψδ(xk+1, xk) + Lk+1V [xk](xk+1) + δ, (14)

where Lk+1 = 2ik−1Lk, Sk+1 := Sk + 1
Lk+1

.

φk+1(x) := ψδ(x, xk) + Lk+1V [xk](x), xk+1 := arg min
x∈Q

δ̃φk+1(x). (15)

5: end for
Ensure: x̄N = 1

SN

∑N−1
k=0

xk+1

Lk+1

Before we prove the theorem we should note that that we can reduce Algorithm 5 to Algorithm 1.
Indeed, let us always choose Lk+1 = L instead of Lk+1 = 2ik−1Lk in Algorithm 5. In this case it is
guaranteed that we exit the inner loop in Algorithm 5 after the first step due to (δ, L)-model definition.
Moreover, with this choice of Lk+1 Algorithm 5 generates the same sequences as in Algorithm 1. We
prove Thus, Theorem 3 is a corollary of Theorem 7.

Theorem 7. Let V [x0](x∗) ≤ R2, where x0 is the starting point, and x∗ is the nearest minimum point
to the point x0 in the sense of Bregman divergence V [y](x). Then, for the sequence, generated by
Algorithm 5 the following inequality holds:

f(x̄N)− f(x∗) ≤
R2

SN
+ δ̃ + δ ≤ 2LR2

N
+ δ̃ + δ.

Moreover, for Algorithm 5 the total number of attempts to solve (15) is bounded by 2N + log2
L
L0

.

First, we need to prove two lemmas in order to obtain the final result. Let us prove Lemma 1.

Lemma 1. Let ψ(x) be a convex function and

y = arg min
x∈Q

δ̃{ψ(x) + βV [z](x)},

where β ≥ 0. Then

ψ(x∗) + βV [z](x∗) ≥ ψ(y) + βV [z](y) + βV [y](x∗)− δ̃.

Proof. Using Definition 2, we have:

∃g ∈ ∂ψ(y), 〈g + β∇yV [z](y), x∗ − y〉 ≥ −δ̃.
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Then inequality

ψ(x∗)− ψ(y) ≥ 〈g, x∗ − y〉 ≥ 〈β∇yV [z](y), y − x∗〉 − δ̃

and equality

〈∇yV [z](y), y − x∗〉 = 〈∇d(y)−∇d(z), y − x∗〉 = d(y)− d(z)− 〈∇d(z), y − z〉+
+d(x∗)− d(y)− 〈∇d(y), x∗ − y〉 − d(x∗) + d(z) + 〈∇d(z), x∗ − z〉 =

= V [z](y) + V [y](x∗)− V [z](x∗)

complete the proof.

Lemma 2. We have the following inequality:

f(xk+1)

Lk+1

− f(x∗)

Lk+1

≤ V [xk](x∗)− V [xk+1](x∗) +
δ̃

Lk+1

+
δ

Lk+1

.

Proof. From the stopping criterion (14), we have:

f(xk+1) ≤ f(xk) + ψδ(xk+1, xk) + Lk+1V [xk](xk+1) + δ.

Using Lemma 1 with ψ(x) = ψδ(x, xk) and β = Lk+1, we obtain:

f(xk+1) ≤ f(xk) + ψδ(x∗, xk) + Lk+1V [xk](x∗)− Lk+1V [xk+1](x∗) + δ̃ + δ.

In view of the model definition (2), we have:

f(xk+1) ≤ f(x∗) + Lk+1V [xk](x∗)− Lk+1V [xk+1](x∗) + δ̃ + δ.

Remark 3. Let us show that Lk ≤ 2L ∀k ≥ 0. For k = 0 this is true from the fact that L0 ≤ L.
For k ≥ 1 this follows from the fact that we leave the inner cycle earlier than Lk will be greater than
2L. The exit from the cycle is guaranteed by the condition that there is an (δ, L)-model for f(x) at
any point x ∈ Q.

Finally, we prove the theorem.

Proof. Let us sum up the inequality from Lemma 2 from 0 to N − 1:

N−1∑

k=0

f(xk+1)

Lk+1

− SNf(x∗) ≤ V [x0](x∗)− V [xN ](x∗) + SN δ̃ + SNδ.

Since V [xN ](x∗) ≥ 0 and V [x0](x∗) ≤ R2, we obtain inequality

N−1∑

k=0

f(xk+1)

Lk+1

− SNf(x∗) ≤ R2 + SN δ̃ + SNδ.

Let us divide both parts by SN .

1

SN

N−1∑

k=0

f(xk+1)

Lk+1

− f(x∗) ≤
R2

SN
+ δ̃ + δ.

DOI 10.20347/WIAS.PREPRINT.2688 Berlin 2020



F. Stonyakin et al. 20

Using the convexity of f(x) we can show that

f(x̄N)− f(x∗) ≤
R2

SN
+ δ̃ + δ.

Remains only to prove that
1

SN
≤ 2L

N
.

As it follows from Definition 1 and Remark 3 for all k ≥ 0 Lk ≤ 2L. Thus, we have that

1

Lk
≥ 1

2L

and

SN =
N∑

k=0

1

Lk
≥ N

2L
.

The total number of attempts to solve (15) is bounded in the same way as in [47].

In the same way as it is done in [3, 13, 25, 30, 50], one can show that the proposed method is primal-
dual.

B Analysis of Algorithm 2 in the case of (δ, L, µ)-model

Now we consider a proof of Theorem 4. To analyze Algorithm 2, assume that it works for k iterations.
By Lemma 1, for each x ∈ Q:

−δ̃ ≤ ψδ(x, x
k)− ψδ(xk+1, xk) + Lk+1V [xk](x)− Lk+1V [xk+1](x)− Lk+1V [xk](xk+1).

It means that
Lk+1V [xk+1](x) ≤ δ̃ + ψδ(x, x

k)− ψδ(xk+1, xk)+ (16)

+Lk+1V [xk](x)− Lk+1V [xk](xk+1).

Further, ψδ(x, y) is a (δ, L)-model w.r.t. V [y](x) and from

f(xk+1) ≤ f(xk) + ψδ(x
k+1, xk) + Lk+1V [xk](xk+1) + δ,

we get
−Lk+1V [xk](xk+1) ≤ δ − f(xk+1) + f(xk) + ψδ(x

k+1, xk).

Now (16) means

Lk+1V [xk+1](x) ≤ δ̃ + δ − f(xk+1) + f(xk) + ψδ(x, x
k) + Lk+1V [xk](x). (17)

Since ψδ(x, y) is a (δ, L, µ)-model for f , we have:

f(xk) + ψδ(x, x
k) ≤ f(x)− µV [xk](x).

Considering (17), we obtain:

Lk+1V [xk+1](x) ≤ δ̃ + δ + f(x)− f(xk+1) + (Lk+1 − µ)V [xk](x).
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Set x = x∗. Since L0 ≤ 2L, we have Lk+1 ≤ 2L for each k ≥ 0. We also assume in Algorithm 2
that Lk+1 ≥ µ. Thus, we have

1

2L
≤ 1

Lk+1

≤ 1

µ
(∀k = 0, 1, 2 . . .).

Then we have ∀i ∈ N : i < k(
1− µ

Lk+1

)(
1− µ

Lk

)
. . .

(
1− µ

Lk−i

)
≤
(

1− µ

2L

)i+1

. (18)

Therefore, we obtain:

V [xk+1](x∗) ≤
f(x∗)− f(xk+1) + δ + δ̃

Lk+1
+

(
1− µ

Lk+1

)
V [xk](x∗),

and

f(xk+1)− f(x∗)

Lk+1

+ V [xk+1](x∗) ≤

≤ δ + δ̃

Lk+1

+

(
1− µ

Lk+1

)
V [xk](x∗) ≤ (δ + δ̃)

(
1

Lk+1

+
1

Lk

(
1− µ

Lk+1

))
+

+

(
1− µ

Lk+1

)(
1− µ

Lk

)
V [xk](x∗) ≤ . . . ≤ (δ + δ̃)

(
1

Lk+1

+
1

Lk

(
1− µ

Lk

)
+

+
1

Lk−1

(
1− µ

Lk

)(
1− µ

Lk−1

)
+ . . .+

1

L1

(
1− µ

Lk

)(
1− µ

Lk−1

)
. . .

(
1− µ

L1

))
+

+

(
1− µ

Lk+1

)(
1− µ

Lk

)
. . .

(
1− µ

L1

)
V [x0](x∗).

For further reasoning we introduce average parameter L̂:

1− µ

L̂
= k+1

√(
1− µ

Lk+1

)(
1− µ

Lk

)
. . .

(
1− µ

L1

)
.

Note that by Li ≥ µ (i = 1, 2, . . .)

min
1≤i≤k+1

Li ≤ L̂ ≤ max
1≤i≤k+1

Li≤ 2L.

Now, taking into account (18), we have:

f(xk+1)− f(x∗)

Lk+1

+ V [xk+1](x∗) ≤
δ + δ̃

µ

k∑

i=0

(
1− µ

2L

)
+

(
1− µ

L̂

)k+1

V [x0](x∗) ≤ (19)

≤ 2L(δ + δ̃)

µ2

(
1−

(
1− µ

2L

)k+1
)

+

(
1− µ

L̂

)k+1

V [x0](x∗). (20)

Finally, we have

V [xk+1](x∗) ≤
2L(δ + δ̃)

µ2

(
1−

(
1− µ

2L

)k+1
)

+

(
1− µ

L̂

)k+1

V [x0](x∗).

and by (19) – (20) and Lk+1 ≤ 2L means:

f(xk+1)− f(x∗) ≤
4L2(δ + δ̃)

µ2

(
1−

(
1− µ

2L

)k+1
)

+ 2L

(
1− µ

L̂

)k+1

V [x0](x∗).
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C Analysis of Algorithm 1 in the case of (δ, L, µ)-model

Theorem 8. Let ψδ(x, y) be a (δ, L, µ)-model for f w.r.t. V [y](x) and yk = argmini=1,...,k(f(xi)).
Then, after k iterations of Algorithm 1, we have

V [xk+1](x∗) ≤
δ + δ̃

µ
+
(

1− µ

L

)k+1

V [x0](x∗).

and

f(yk+1)− f(x∗) ≤ L
(

1− µ

L

)k+1

V [x0](x∗) + δ + δ̃.

Proof. Clearly, f(x∗) ≤ f(xk+1) and

LV [xk+1](x∗) ≤ δ̃ + δ + (L− µ)V [xk](x∗),

i.e.

V [xk+1](x∗) ≤
1

L
(δ + δ̃) +

(
1− µ

L

)
V [xk](x∗).

Further,

V [xk+1](x∗) ≤
1

L
(δ + δ̃) +

(
1− µ

L

)( 1

L
(δ + δ̃) +

(
1− µ

L

)
V [xk−1](x∗)

)
≤ . . . ≤

≤ 1

L
(δ̃ + δ)

(
1 +

(
1− µ

L

)
+ . . .+

(
1− µ

L

)k)
+
(

1− µ

L

)k+1

V [x0](x∗).

Therefore, taking into account the following fact

k∑

i=0

(
1− µ

L

)i
<

1

1−
(
1− µ

L

) =
L

µ
,

we obtain

V [xk+1](x∗) ≤
δ + δ̃

µ
+
(

1− µ

L

)k+1

V [x0](x∗).

Now we consider the question on convergence by function:

V [xk+1](x∗) ≤
(
f(x∗)− f(xk+1) + δ + δ̃

) 1

L
+
(

1− µ

L

)
V [xk](x∗) ≤

≤
(
f(x∗)− f(xk+1) + δ + δ̃

) 1

L
+

+
(

1− µ

L

)((
f(x∗)− f(xk) + δ + δ̃

) 1

L
+
(

1− µ

L

)
V [xk−1](x∗)

)
≤

≤ . . . ≤
(

1− µ

L

)k+1

V [x0](x∗) +
1

L

k∑

i=0

(
1− µ

L

)i (
f(x∗)− f

(
xk+1−i)+ δ + δ̃

)
.

Therefore, we have

1

L

k∑

i=0

(
1− µ

L

)i
(f(xk+1−i)− f(x∗)) ≤

(
1− µ

L

)k+1

V [x0](x∗) +
1

L

k∑

i=0

(
1− µ

L

)i
(δ + δ̃).
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Table 1: Results for Example 9.

Non-adaptive Adaptive
k Time Estimate Time Estimate

160 0:01:19 0.19827 0:05:25 0.02110
180 0:01:27 0.16220 0:05:55 0.01258
200 0:01:36 0.13264 0:07:11 0.00750
220 0:01:55 0.10849 0:07:19 0.00474
240 0:01:57 0.08873 0:07:56 0.00282

Denote by yk = argmini=1,...,k(f(xi)). Then, taking into account

1

L

k∑

i=0

(
1− µ

L

)i
=

1

µ

(
1−

(
1− µ

L

)k+1
)
≥ 1

L
,

we obtain

f(yk+1)− f(x∗) ≤ µ

(
1− µ

L

)k+1

1−
(
1− µ

L

)k+1
V [x0](x∗) + δ + δ̃ ≤

≤ L
(

1− µ

L

)k+1

V [x0](x∗) + δ + δ̃.

D Some Numerical Tests for Algorithms 1 and 2

We consider two numerical examples for Algorithms 1 and 2 for minimizing µ-strongly convex ob-
jective function of N variables on a unit ball B1(0) with center at zero with respect to the standard
Euclidean norm. It is clear that such functions admit (δ, L, µ)-model of the standard form ψδ(x, y) =
〈∇f(y), x − y〉 for the case of Lipschitz-continuous gradient ∇f . In the first of the considered ex-
amples, it is easy to estimate L and µ, and the ratio µ

L
is not very small, which ensures a completely

acceptable rate of convergence of the non-adaptive method (see Table 1 below). In the second exam-
ple, the objective is ill-conditioned meaning that the ratio µ

L
so small that the computer considers the

value 1− µ
L

to be equal to 1 and Theorem 8 for the non-adaptive algorithm does not allow to estimate
the rate of convergence at all. In this case, the use of adaptive Algorithm 2 leads to noticeable results
(see the Table 2 below).

Example 9. Consider a function

f(x) = x21 + 2x22 + 3x23 + . . .+Nx2N ,

where N = 100 and input data

x0 =
(0.2, . . . , 0.2)

||(0.2, . . . , 0.2)|| is the initial approximation ,

µ = 2, L0 = 2µ, L = 2N .

The results of the comparison of the work of algorithms 1 and 3 are presented in the comparative
Table 1, where k is the number of iterations of these algorithms. Time presented in the format of
"HOURS:MINUTES:SECONDS".
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Table 2: Results for Example 10.

Adaptive
k Time Estimate
50 0:07:37 0.71273
100 0:14:27 0.51241
150 0:23:00 0.372301
200 0:28:07 0.27334
250 0:34:32 0.19699
300 0:43:10 0.14456

As we can see from the Table 1, in the previous example the non-adaptive method converges no worse
than the adaptive one. However, it is possible that µ

L
is too small, which leads to 1 − µ

L
≈ 1. In this

case, Theorem 8 cannot estimate the rate of convergence of the method. We give another example.

Example 10. Consider the target functional

f(x1, . . . , xN) =
N∑

k=1

(kx2k + e−kxk).

It is easy to verify that for such a function one can choose µ = 2 + 1
e

and L = 2N + N2e and the
program calculates the value of 1− µ

L
equal to 1. However, applying Algorithm 2 with adaptive tuning

to the constant L and Theorem 4 we obtain meaningful results, which we present in Table 2.

Experiments were performed using CPython 3.7 software on a computer with a 3-core AMD Athlon II
X3 450 processor with a clock frequency of 3.2 GHz. The computer’s RAM was 8 GB.

E Complexity Analysis of Sinkhorn’s Algorithm

Let us consider regularized optimal transport problem

〈C, π〉+ γ
∑

i,j

πij ln πij → min
π∈U(p,q)

. (21)

Recall that the dual problem to (21) is equivalent to

f(u, v) := 〈1B(u, v)1〉 − 〈u, p〉 − 〈q, v〉 → min
u,v∈Rn

, (22)

whereB(u, v) := diag(eu)e−C/γ diag(ev) [29]. Below we present a slightly refined complexity anal-
ysis of Algorithm 3 based on the same approach as in [29]. First, we prove that Sinkhorn’s iterations
are contractant for eu

t−u∗ and ev
t−v∗ in Hilbert’s projective metric (cf. [34]).

Lemma 3. Let us define

Rt :=

{
maxj(v

t
j − v∗j )−minj(v

t
j − v∗j ), t mod 2 = 0,

maxi(u
t
i − u∗i )−mini(u

t
i − u∗i ), t mod 2 = 1,

where (u∗, v∗) is the solution of problem (22). Then for any t ≥ 0 it holds Rt+1 ≤ Rt.
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Proof. W.l.o.g. consider even t. Let us denote π∗ = B(u∗, v∗) ∈ U(p, q). Then for any i

ut+1
i − u∗i = uti − u∗i + ln pi − ln

(∑

j

eu
t
i−u∗i π∗ije

vtj−v∗j

)
= − ln

(∑

j

π∗ij
pi
ev

t
j−v∗j

)
,

and since
∑

j

π∗ij
pi

= 1 one obtains

eminj(v
t
j−v∗j ) ≤

∑

j

π∗ij
pi
ev

t
j−v∗j ≤ emaxj(v

t
j−v∗j ),

therefore,
Rt+1 ≤ Rt.

Now repeating the proof of Theorem 1 from [29] we obtain the following complexity bound.

Theorem 11. The inner cycle of Algorithm 3 stops in number of iterations

N = O

(
R0

ε′

)
,

and

R0 ≤
maxi,j Cij −mini,j Cij

γ
.

Notice that now we require an approximated solution of regularized problem (21), thus the choice of
ε′ in Algorithm 3 differs from the one from [2, 29].

Theorem 12. Algorithm 3 returns π̂ ∈ U(p, q) s.t.

〈C, π̂〉+ γ
∑

i,j

π̂ij ln π̂ij ≤ 〈C, π∗〉+ γ
∑

i,j

π∗ij ln π∗ij + ε̃,

where π∗ is the solution of problem (21).

Proof. Notice that for any π ∈ U(B(u, v)1, B(u, v)T1) it holds

〈C,B(u, v)〉+ γ
∑

i,j

B(u, v)ij lnB(u, v)ij ≤ 〈C, π〉+ γ
∑

i,j

πij lnπij.

It is easy to see that for any pair π, π̃ ∈ Sn×n(1)

∣∣∣∣∣
∑

i,j

πij ln πij −
∑

i,j

π̃ij ln π̃ij

∣∣∣∣∣ ≤ n2h ln
1

h
+ ‖π − π̃‖1 ln

1

h
∀h ∈ (0, e−1),

thus ∣∣∣∣∣
∑

i,j

πij ln πij −
∑

i,j

π̃ij ln π̃ij

∣∣∣∣∣ ≤ 2 ‖π − π̃‖1 ln

(
n2

‖π − π̃‖1

)
.
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Now, for any π ∈ Sn×n(1) and r, c ∈ Sn(1) there exists π̃ ∈ U(r, c) given by Algorithm 2 from
[2] s.t. ‖π − π̃‖1 ≤ ‖π1− r‖1 +

∥∥πT1− c
∥∥
1
. Combining all these facts together we obtain for π̂

defined in Algorithm 3 the following estimate

〈C, π̂〉+γ
∑

i,j

π̂ij ln π̂ij ≤ 〈C, π∗〉+γ
∑

i,j

π∗ij lnπ∗ij+2

(
max
i,j

Cij −min
i,j

Cij + 2γ ln

(
n2

ε′

))
ε′

Substituting

ε′ =
ε̃

4
(

maxi,j Cij −mini,j Cij + 2γ ln
(

4γn2

ε̃

))

we obtain

〈C, π̂〉+ γ
∑

i,j

π̂ij ln π̂ij −
[
〈C, π∗〉+ γ

∑

i,j

π∗ij ln π∗ij

]

≤ 2

(
max
i,j

Cij −min
i,j

Cij + 2γ ln

(
n2

ε′

))
ε̃

4
(

maxi,j Cij −mini,j Cij + 2γ ln
(

4γn2

ε̃

))

≤ ε̃

2

maxi,j Cij −mini,j Cij + 2γ ln
(

4γn2

ε̃

)
+ 2γ ln ε̃

4γε′

maxi,j Cij −mini,j Cij + 2γ ln
(

4γn2

ε̃

)

≤ ε̃

2


1 +

ε̃/(2eε′)

maxi,j Cij −mini,j Cij + 2γ ln
(

4γn2

ε̃

)


 ≤ ε̃.

F Additional Experiments for Prox-Sinkhorn Algorithm

Figure 5 shows the dependence of the mean inner method iteration number upon accuracy and size
of the vector π. With the growth of L, there is a decrease in the mean inner method iteration number.
However, the type of dependence from the accuracy or size of the problem is the same.

1 2 3 4 5
log(1/ε)

1

2

3

4

5

lo
gN

m
ea

n

Proximal Sinkhorn's algorithm, L=1
0.46x+2.23
Proximal Sinkhorn's algorithm, L=10
0.37x+1.10

2.5 3.0 3.5 4.0 4.5 5.0
logn

Proximal Sinkhorn's algorithm, L=1
0.74x+1.51
Proximal Sinkhorn's algorithm, L=10
0.67x+0.08

Mean inner method iteration number

Figure 5: Comparison of inner method iteration number of proximal Sinkhorn’s algorithm for different
L.
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Consider a graph of change of the auxiliary problem solution complexity with increasing external
method iteration number (fig. 6). Note that at the first interval there is an increase in the inner method
iteration number with two peaks at different levels. On subsequent iterations of the external method
the complexity of the solution of the auxiliary problem decreases, approaching a constant.
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Figure 6: The dependence of the total Number of inner iteration from the number of Outer iteration of
external method

G On Inexact Solution of Auxiliary Subproblems

Our goal is to provide a relation between the accuracy of the solution of an optimization problem in
terms of the objective residual and δ̃-‘precision’ in the sense of Definition 2.

Theorem 13. Assume that we find a point x̃ such that φ(x̃) − φ(x̃∗) ≤ ε̃, where x̃∗ is an exact
solution of problem (4). Assume also that φ has L̃-Lipschitz continuous gradient in Q.

If∇φ(x̃∗) = 0, then x̃ = argminδ̃x∈Q φ(x) with δ̃ = R̃
√

2L̃ε̃, where R̃ = maxx,y∈Q ‖y − x‖.

If φ is µ-strongly convex on Q, then x̃ = argminδ̃x∈Q φ(x) with

δ̃ = (L̃R̃ + ‖∇φ(x̃∗)‖∗)
√

2ε̃/µ, (23)

Proof. 1. Assume that∇φ(x̃∗) = 0. Then

1

2L̃
‖∇φ(x̃)‖2∗ ≤ φ(x̃)− φ(x̃∗) ≤ ε̃,

δ̃ = max
x∈Q
〈∇φ(x̃), x̃− x〉 ≤ ‖∇φ(x̃)‖∗max

x∈Q
‖x̃− x‖ ≤

√
2L̃ε̃max

x∈Q
‖x̃− x‖.

2. Let us now assume that∇φ(x̃∗) 6= 0. For strongly convex function φ(x) we have

µ

2
‖x̃− x̃∗‖2 ≤ φ(x̃)− φ(x̃∗) ≤ ε̃.

Hence,

‖x̃− x̃∗‖ ≤
√

2

µ
ε̃. (24)
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Using this and Lipschitz gradient condition, we obtain

‖∇φ(x̃)−∇φ(x̃∗)‖∗ ≤ L̃‖x̃− x̃∗‖ ≤ L̃

√
2

µ
ε̃. (25)

Hence,

δ̃ = max
x∈Q
〈∇φ(x̃), x̃− x〉 = max

x∈Q
〈∇φ(x̃)−∇φ(x̃∗), x̃− x〉+ max

x∈Q
〈∇φ(x̃∗), x̃− x〉

(25)
≤ L̃

√
2

µ
ε̃max
x∈Q
‖x̃− x‖+ max

x∈Q
〈∇φ(x̃∗), x̃∗ − x〉+ max

x∈Q
〈∇φ(x̃∗), x̃− x̃∗〉

(24)
≤ L̃

√
2

µ
ε̃max
x∈Q
‖x̃− x‖+ ‖∇φ(x̃∗)‖∗

√
2

µ
ε̃.

H ProxSinkhorn Theorem

Proof of Theorem 5.

Proof. The estimate for the number of iterations N follows from Theorem 3 since V [π0](π∗) ≤ lnn2

as π ∈ Sn2(1). The first component of (11) is proved in [34], and the second component basically
follows from [5, 29]. Proofs of the second component and bound on c̄k (12) are provided in Appendix E
(Theorem 11). Let us show that it is sufficient to solve minimization problem (10) on each iteration with
accuracy ε̃ = Õ(ε4/(Ln4)) in terms of the objective residual to guarantee δ̃ = ε/2 accuracy in
terms of Definition 2.

To prove this fact, we use relation (23) in Theorem 13 of Appendix G with ‖ · ‖ = ‖ · ‖1, R̃ = 2,
µ = L. To bound ∆ = L̃R̃+ ‖∇φ(x̃∗)‖∗ (in notations of Theorem 13) we modify U(p, q) by adding
constraints: πij ≥ ε/(4n2), i, j = 1, ..., n. The solution of the changed problem is still an O(ε)-
solution of the original problem. For the modified problem ∆ = 5Ln2R̃/ε. According to (23) one
should solve auxiliary problem with accuracy by function value ε̃, which is chosen such that ε/2 =
δ̃ = (5Ln2/ε)R̃

√
2ε̃/L. The only problem is that now we cannot directly apply Sinkhorn’s algorithm.

This problem can be solved by trivial affine transformation of π-space. This transformation reduces
modified polyhedral to the standard one and we can use Sinkhorn’s Algorithm. Such a transformation
doesn’t change (in terms of O( )) the requirements to the accuracy.

I On Clustering by Electoral model

Let us show accurately first that the norm || · || introduced as ||(z, p)||2 = ||z||21 + ||p||22 is indeed a
norm:

1 ||αx|| =
√
||αz||21 + ||αp||22 =

√
α2(||z||21 + ||p||22) = |α| · ||x||

2 ||x|| = 0 ⇐⇒ ||z||21 + ||p||22 = 0 ⇐⇒ ||z||1 = 0 and ||p||2 = 0 ⇐⇒ x = 0

3 ||x+ y|| =
√
||zx + zy||21 + ||px + py||22 ≤

√
(||zx||1 + ||zy||1)2 + (||px||2 + ||py||2)2 ≤

≤
√
||zx||21 + ||px||22 +

√
||zy||21 + ||py||22 = ||x||+ ||y||
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The last inequality holds since
√

(a+ b)2 + (c+ d)2 ≤
√
a2 + c2 +

√
b2 + d2 for each a, b, c, d ≥

0.

Now prove that (7) satisfies the definition of (0, 2Lg)-model of the function (5).

It is easy to see that ψδ(x, x) = 0. Let us show, that inequality (2) holds for ψδ(x, y). For the function
g(x) satisfying (6) we have:

|g(x)− g(y)− 〈∇g(y), x− y〉| ≤ Lg
2
‖x− y‖2. (26)

It means that fµ1,µ2(x)− fµ1,µ2(y)− ψδ(x, y) =

= g(x)− g(y)− 〈∇g(y), x− y〉+ µ1 ·KL(zx|1)− µ1 ·KL(zy|1)+

+
µ2

2
‖px‖22 −

µ2

2
‖py‖22 − µ1 ·KL(zx|1) + µ1 ·KL(zy|1) + Lg ·KL(zx|zy)+

+
Lg
2
‖px − py‖22 −

µ2

2
‖px‖22 +

µ2

2
‖py‖22 =

= g(x)− g(y)− 〈∇g(y), x− y〉+ Lg ·KL(zx|zy) +
Lg
2
‖px − py‖22.

Along with (26) and KL(zx|zy) ≥ ‖zx−zy‖21
2

it leads to

fµ1,µ2(x)− fµ1,µ2(y)− ψδ(x, y) ≤ Lg
2
‖x− y‖2 + Lg ·KL(zx|zy) +

Lg
2
‖px − py‖22,

fµ1,µ2(x)− fµ1,µ2(y)− ψδ(x, y) ≥ −Lg
2
‖x− y‖2 + Lg ·KL(zx|zy) +

Lg
2
‖px − py‖22.

Finally, by definition of the norm ‖ · ‖, we have

0 ≤ fµ1,µ2(x)− fµ1,µ2(y)− ψδ(x, y) ≤ 2Lg ·KL(zx|zy) + Lg‖px − py‖22 = 2LgV [y](x),

i.e. ψδ(x, y) is a (0, 2Lg)-model of the function fµ1,µ2 .

Finally, let us show that inequality (8) holds, i.e. ψδ(x, y) is strongly convex w.r.t. V [y](x). Indeed,

ψδ(x, y) = 〈∇g(y), x− y〉+ µ1〈∇KL(zy|1), zx − zy〉+ µ2〈py, px − py〉−

−Lg ·KL(zx|zy)−
Lg
2
‖px − py‖22 + µ1 (·KL(zx|1)−KL(zy|1)− 〈∇KL(zy|1), zx − zy〉)+

+
µ2

2

(
‖px‖22 − ‖py‖22 − 〈2 · py, px〉 − py

)
=

= ψlinδ (x, y) + (µ1 − Lg) ·KL(zx|zy) +
µ2 − Lg

2
· ‖px − py‖22

and inequality is proven.

J Figures 5 and 6

DOI 10.20347/WIAS.PREPRINT.2688 Berlin 2020



F. Stonyakin et al. 30

(a) Iterates (b) Euclidean Mean
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Figure 7: Computation of the barycenter of a set of 20 images of the number 7 from the MNIST dataset
[41].

Figure 8: Approximate barycenter computed by the Prox IBP algorithm, for different weighting combi-
nations between four original images (marked by the black boxes).
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